
Using Online Algorithms
 to Solve NP-Hard Problems
More Efficiently in Practice

Matthew Streeter

Avrim Blum Stephen Smith,
Chair

Carla Gomes,
Cornell

Tuomas Sandholm John Hooker,
Tepper School

Committee

Background

2

Background
• NP-hard problems are worst-case

intractable under standard assumptions

• But, they arise frequently in practice

2

Background
• NP-hard problems are worst-case

intractable under standard assumptions

• But, they arise frequently in practice

• Different techniques for dealing with this

• Problem-specific theory (approximation algorithms,
improved exponential-time algorithms, ...)

• Benchmark-driven engineering (SAT solvers, job
shop scheduling heuristics, ...)

• Black box optimization (simulated annealing, genetic
algorithms, ...)

2

Background
• NP-hard problems are worst-case

intractable under standard assumptions

• But, they arise frequently in practice

• Different techniques for dealing with this

• Problem-specific theory (approximation algorithms,
improved exponential-time algorithms, ...)

• Benchmark-driven engineering (SAT solvers, job
shop scheduling heuristics, ...)

• Black box optimization (simulated annealing, genetic
algorithms, ...)

2

This thesis

• Goal: boost performance of existing
algorithms by adapting them to actual
problem instance(s) encountered

• use black-box techniques that can be applied to
many problem domains

• adaptation can be performed online, while solving
a sequence of problem instances

3

Outline

• Combining multiple heuristics online

4

`

• Online algorithms for maximizing
submodular functions

• Using decision procedures efficiently
for optimization

• The max k-armed bandit problem

Combining Multiple
Heuristics Online

Heuristics can have
complementary strengths
• Running time of heuristics varies widely across

instances

• Can often reduce average-case running time by
interleaving execution of multiple heuristics

Instance SatELiteGTI
CPU (s)

MiniSat
CPU (s)

liveness-unsat-2-01dlx_c_bp_u_f_liveness 33 15
vliw-sat-2-0/9dlx_vliw_at_b_iq6_bug4 376 ≥ 12000
vliw-sat-2-0/9dlx_vliw_at_b_iq6_bug9 ≥ 12000 131

6

• Running time of randomized heuristics can vary
widely across different random seeds

The power of restarts

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

time (s)

P
r[

n
o
t

fi
n

is
h

e
d

]

7

• Periodically restarting with fresh random seed can
dramatically improve performance

Schedules

• Schedule = sequence of pairs (h,t) (a pair (h,t)
represents running heuristic h for time t)

• Execute in
or

8

run h1 for
5 minutesh1

h2
run h2 for
5 minutes

. . .

time

run h1 for 10
minutes

run h2 for 10
minutes

suspend-and-resume model
restart model

Schedules

• Schedule = sequence of pairs (h,t) (a pair (h,t)
represents running heuristic h for time t)

• Execute in
or

8

run h1 for
5 minutesh1

h2
run h2 for
5 minutes

. . .

time

suspend-and-resume model
restart model

run h1 for 10
more minutes

run h2 for 10
more minutes

Schedules

• Schedule = sequence of pairs (h,t) (a pair (h,t)
represents running heuristic h for time t)

• Execute in
or

8

run h1 for
5 minutesh1

h2
run h2 for
5 minutes

. . .

time

restart model

restart h1, run
for 10 minutes

restart h2, run
for 10 minutes

suspend-and-resume model

Schedules

• Schedule = sequence of pairs (h,t) (a pair (h,t)
represents running heuristic h for time t)

• Execute in
or

8

run h1 for
5 minutesh1

h2
run h2 for
5 minutes

. . .

time

run h1 for 10
minutes

run h2 for 10
minutes

Heuristic
Time to solve

instance

h1 10 min

h2 20 min

restart model
suspend-and-resume model

Schedules

• Schedule = sequence of pairs (h,t) (a pair (h,t)
represents running heuristic h for time t)

• Execute in
or

8

run h1 for
5 minutesh1

h2
run h2 for
5 minutes

. . .

time

run h1 for 10
minutes

run h2 for 10
minutes

Heuristic
Time to solve

instance

h1 10 min

h2 20 min

restart model
suspend-and-resume model

Schedules

• Schedule = sequence of pairs (h,t) (a pair (h,t)
represents running heuristic h for time t)

• Execute in
or

8

run h1 for
5 minutesh1

h2
run h2 for
5 minutes

. . .

time

run h1 for 10
minutes

run h2 for 10
minutes

Heuristic
Time to solve

instance

h1 10 min

h2 20 min

suspend-and-resume model
restart model

The offline problem

• Given: set H of deterministic heuristics, set
X of instances of some decision problem.
We know how long each heuristic takes to
solve each instance (think of X as training data)

• Goal: construct schedule S that achieves one
of two objectives:

• maximize #(instances solved in time ≤ T), for
some fixed T > 0

• minimize average time to solve each instance

9

Computational complexity
• Let H={h1,h2,...} be a collection

of subsets of a finite set X

• Think of each subset h ∈ H as
a heuristic, and each element x
∈ X as an instance

• h solves x in unit time if x ∈ h,
otherwise h never solves x

10

X

h2
h3

h1

h4

Computational complexity
• Let H={h1,h2,...} be a collection

of subsets of a finite set X

• Think of each subset h ∈ H as
a heuristic, and each element x
∈ X as an instance

• h solves x in unit time if x ∈ h,
otherwise h never solves x

10

X

h2
h3

h1

h4

• Maximizing #instances solved in time ≤ T is Max k-Coverage (k=T).
NP-hard to get 1-1/e+ε approximation, for any ε > 0 (Feige 1997)

Computational complexity
• Let H={h1,h2,...} be a collection

of subsets of a finite set X

• Think of each subset h ∈ H as
a heuristic, and each element x
∈ X as an instance

• h solves x in unit time if x ∈ h,
otherwise h never solves x

10

X

h2
h3

h1

h4

• Maximizing #instances solved in time ≤ T is Max k-Coverage (k=T).
NP-hard to get 1-1/e+ε approximation, for any ε > 0 (Feige 1997)

• Minimizing avg. time to solve each instance is Min-Sum Set Cover.
NP-hard to get 4-ε approximation, for any ε > 0 (Feige et al., 2004)

Greedy algorithm
• Let f(S) = #(instances solved by schedule S) (in restart

model or suspend-and-resume, whichever we care about)

• Let G = empty schedule

• While f(G) < |X|:

• Find the pair a = (h,t) maximizing [f(G + a) - f(G)] / t, and
append it to G

11

Greedy algorithm
• Let f(S) = #(instances solved by schedule S) (in restart

model or suspend-and-resume, whichever we care about)

• Let G = empty schedule

• While f(G) < |X|:

• Find the pair a = (h,t) maximizing [f(G + a) - f(G)] / t, and
append it to G

11

• Average CPU time for G at most 4 times optimal.
Proof generalizes analysis of greedy algorithm for
Min-Sum Set Cover by Feige et al. (2004)

• #(instances solved in time T) at least 1-1/e times
optimal, for certain values of T. Follows from Khuller
et al. (1999)

The online problem
• Given: set H of heuristics, fed sequence x1, x2, ..., xn

of n instances

• Solve each xi (via some schedule) before moving on
to xi+1. Only learn outcomes of runs we actually
perform.

• Goal is to achieve one of two objectives:

• maximize #(instances solved in time ≤ T), for some fixed
T > 0

• minimize average time to solve each instance

• Assume for each xi, some heuristic can solve in time
≤ B. Also, time each heuristic takes is integer.

12

A solved problem
• Suppose instead of picking a schedule, you get to

pick one heuristic and run it for unit time. Want to
maximize #(instances solved)

• Define regret = maxh ∈ H #(instances h can solve in

unit time) - #(instances you solve)

• Any online schedule-selection algorithm has worst-
case regret ≥ n(1-1/k), where k=|H|

• But, Exp3 algorithm (Auer et al., 2002) has worst-
case expected regret O((n k log k)1/2)

13

A useful gadget
• Suppose you still have to pick one heuristic, but

now can run for unit time in expectation

• For example, could flip coin of bias 1/t, if heads run
h for time t. Call this “action (h,t)”

• Using Exp3 to pick actions, worst-case expected
regret is O((n A log A)1/2), where regret now
defined in terms of actions and A = #actions.

• Some algebra shows E[#(instances we solve)] is
≥ max h,t { #(instances solved by h in time t) / t } - E[regret]
So we’re maximizing # instances solved per unit
time...

14

A useful gadget

15

gadget

instances
 x1, x2, ... xn

solved
instances

unsolved
instances

I may not solve all n
instances you give me, but
I’ll approximately maximize
the number of instances I

solve per unit of CPU
time I use up.

16

gadget

instances
 x1, x2, ... xn

solved
instances

unsolved
instances

I may not solve all n
instances you give me, but
I’ll approximately maximize
the number of instances I

solve per unit of CPU
time I use up.

A useful gadget

Online greedy algorithm

16

gadget
1

instances
 x1, x2, ... xn gadget

2
gadget

3
gadget

4 . . .

solved
instances

solved
instances

solved
instances

solved
instances

Online greedy algorithm

17

gadget
1

instances
 x1, x2, ... xn gadget

2
gadget

3
gadget

4 . . .

solved
instances

solved
instances

solved
instances

solved
instances

Online greedy algorithm

17

gadget
1

instances
 x1, x2, ... xn gadget

2
gadget

3
gadget

4 . . .

solved
instances

solved
instances

solved
instances

solved
instances

• As n→∞, online algorithm’s performance guarantees
converge to those of offline greedy algorithm

• Analysis views online algorithm as variant of offline
greedy algorithm

Exploiting features

• Suppose each instance is labeled with the values of
one or more Boolean features

18

Instance industrial/
academic

small/
large

x1 industrial large

x2 industrial small

x3 academic large

Exploiting features

• Suppose each instance is labeled with the values of
one or more Boolean features

18

• Let XF = subsequence of instances with feature F

• Can get the following guarantee: simultaneously for
each feature F, performance on XF converges to that
of offline greedy schedule for instances in XF

• Get this guarantee using known technique: use algorithms
for sleeping experts problem (Freund et al., 1997; Blum &
Mansour 2007) as wrapper around multiple copies of online
greedy algorithm

Randomized heuristics

• All results extend to randomized heuristics

• Can have some heuristics execute in restart
model, others in suspend-and-resume

19

run h1 for
5 minutesh1

h2
run h2 for
5 minutes

. . .

time

run h1 for 10
more minutes

restart h2, run
for 10 minutes

Other theoretical
results

• Offline and online algorithms based on
shortest paths

• Generalization bounds for learning a
schedule from training data

• Lower bounds on regret for online
schedule-selection problem

20

Previous work
• Algorithm portfolios

• Idea of using schedules to improve average-case,
offline algorithms for special cases (Huberman et
al., 1997; Gomes & Selman 2001, ...)

• Using features to pick out a single heuristic
(Leyton-Brown et al., 2003; Xu et al., 2007, ...)

• Restart schedules for single randomized algorithm
(Luby et al., 1993; Gomes et al.,1998, ...)

• Exponential-time offline algorithms for computing
task-switching schedules (Petrik 2005; Sayag et al., 2006)

21

Contributions

• New techniques for combining heuristics

• consider a class of schedules that generalizes
schedules considered in previous work

• first polynomial-time approximation
algorithms for constructing these schedules

• online algorithms for selecting schedules
on-the-fly while solving a sequence of problems

• can exploit features in a principled way

22

Solver competitions
• Each year, various conferences hold solver

competitions

• Each submitted solver is run on a set of benchmark
instances, subject to per-instance time limit

• Solvers judged on how many instances they solve and
how fast

• How would schedules created by our algorithms
have fared in the competitions?

• determine running time of each heuristic on each
instance using data from competition web sites

• removed instances that no solver could solve
23

Solver competitions

24

Competition Problem domain

SAT 2007 Boolean satisfiability

SMT-COMP’07 satisfiability modulo theories

CASC-J3 theorem proving

MaxSAT-2007 maximum satisfiability

PB’07 zero-one integer programming

QBFEVAL’07 quantified Boolean formulae

CPAI’06 constraint satisfaction

IPC-5 A.I. planning

25

Solver
Avg. CPU

[lower,upper]
Num.
solved

adaptg2wsat+ [2157,∞] 252

adaptg2wsat0 [2204,∞] 248

SATzilla [2275,∞] 248

ranov [2288,∞] 242

March KS [2305,∞] 257

adaptnovelty [2331,∞] 240

gnovelty+ [2359,∞] 242

KCNFS [2554,∞] 237

sapsrt [2804,∞] 188

MXC [3642,∞] 135

minisat [3676,∞] 140

SAT7 [3761,∞] 122

DEWSATZ 1A [3797,∞] 121

MiraXTv3 [3940,∞] 106

Results for SAT 2007, random category

Offline algorithms

26

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Fastest individual solver [2157,∞] 252

Offline algorithms

26

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Fastest individual solver [2157,∞] 252

Parallel schedule [1775,7571] 302

Offline algorithms

26

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Fastest individual solver [2157,∞] 252

Parallel schedule [1775,7571] 302

Greedy schedule (restart) [1320,3657] 342

Offline algorithms

26

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Fastest individual solver [2157,∞] 252

Parallel schedule [1775,7571] 302

Greedy schedule (restart) [1320,3657] 342

Greedy schedule (suspend) [1223,2372] 350

Offline algorithms

26

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Fastest individual solver [2157,∞] 252

Parallel schedule [1775,7571] 302

Greedy schedule (restart) [1320,3657] 342

Greedy schedule (suspend) [1223,2372] 350

Greedy schedule (suspend) crossval [1337,3252] 344

Greedy schedule (restart) crossval [1342,4804] 340

Offline algorithms

27

0

100

200

300

400

0.01 0.1 1 10 100 1000 10000

Time

N
u

m
.

s
o

lv
e
d

Greedy schedule (suspend)

Parallel schedule

Fastest individual solver

Results for SAT 2007, random category

28

Greedy schedule (restart model)
for SAT 2007, random category

adaptg2wsat+

adaptg2wsat0

adaptnovelty

DEWSATZ 1A

gnovelty+
KCNFS

March KS

minisat

MiraXTv3

MXC

ranov

sapsrt

SAT7

SATzilla

0.01 0.1 1 10 100 1000
time (seconds)

Online algorithms
• We consider two feedback models

• Full information: after solving xi, we learn how long each
heuristic would have taken to solve xi

• Partial information: only learn outcome of runs we actually
perform

29

Online algorithms
• We consider two feedback models

• Full information: after solving xi, we learn how long each
heuristic would have taken to solve xi

• Partial information: only learn outcome of runs we actually
perform

29

• Evaluate online greedy algorithm in both models

• In full info model, gadget uses self-tuning version of WMR
(Auer & Gentille, 2000)

• In partial info model, gadget uses self-tuning version of
Exp3 (Auer et al., 2002)

Online algorithms
• We consider two feedback models

• Full information: after solving xi, we learn how long each
heuristic would have taken to solve xi

• Partial information: only learn outcome of runs we actually
perform

29

• Also evaluate online algorithms that solve each
instance by choosing a single heuristic to run

• In full info model, use self-tuning version of WMR

• In partial info model, use self-tuning version of Exp3

Online algorithms

30

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Greedy schedule (suspend) [1223,2372] 350

Greedy schedule (suspend) cross-val [1337,3252] 344

Parallel schedule [1775,7571] 302

Fastest individual solver [2157,∞] 252

Online algorithms

30

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Greedy schedule (suspend) [1223,2372] 350

Greedy schedule (suspend) cross-val [1337,3252] 344

Parallel schedule [1775,7571] 302

Fastest individual solver [2157,∞] 252

Online single-heur (full info) [2184,∞] 255

Online single-heur (partial info) [2835,∞] 191

Online greedy (full info) [1304,4261] 347

Online algorithms

30

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Greedy schedule (suspend) [1223,2372] 350

Greedy schedule (suspend) cross-val [1337,3252] 344

Parallel schedule [1775,7571] 302

Fastest individual solver [2157,∞] 252

Online single-heur (full info) [2184,∞] 255

Online single-heur (partial info) [2835,∞] 191

Online greedy (full info) [1304,4261] 347

Online greedy (partial info) [2050,8127] 294

Online algorithms

30

Results for SAT 2007, random category

Solver
Avg. CPU

[lower,upper]
Num.
solved

Greedy schedule (suspend) [1223,2372] 350

Greedy schedule (suspend) cross-val [1337,3252] 344

Parallel schedule [1775,7571] 302

Fastest individual solver [2157,∞] 252

Online single-heur (full info) [2184,∞] 255

Online single-heur (partial info) [2835,∞] 191

Online algorithms

31

Parallel schedule

Offline greedy schedule

Fastest solver

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

Results for SAT 2007, random category

Online algorithms

31

Parallel schedule

Offline greedy schedule

Fastest solver

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

Online single (full info)

Online single (partial)

Results for SAT 2007, random category

Online algorithms

31

Parallel schedule

Offline greedy schedule

Fastest solver

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

Online single (full info)

Online single (partial)

Online greedy (full info)

Online greedy (partial)

Results for SAT 2007, random category

Online algorithms

31

Parallel schedule

Offline greedy schedule

Fastest solver

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

1000

1500

2000

2500

3000

100 1000 10000 100000

Num. instances encountered

A
v
g

.
C

P
U

 t
im

e

Online single (full info)

Online single (partial)

Online greedy (full info)

Online greedy (partial)
Online greedy (p=0.01)

Results for SAT 2007, random category

Exploiting features
• Created features based on competition benchmark

directory structure

• For each subdirectory, have feature that is true if
instance resides under that directory

32

SAT 2007, random

Large

. . .

3SAT

5SAT
[40 instances]

[60 instances]

Exploiting features

33

Solver
Avg. CPU

[lower,upper]
Num.
solved

Greedy schedule [1223,2372] 350

Online greedy (full info) [1304,4261] 347

Greedy schedule (cross-val) [1337,3252] 344

Parallel schedule [1775,7571] 302

Online greedy (partial info) [2050,8127] 294

Fastest individual solver [2157,∞] 252

Online single-heur (full info) [2184,∞] 255

Online single-heur (partial info) [2835,∞] 191

Results for SAT 2007, random category

Exploiting features

33

Solver
Avg. CPU

[lower,upper]
Num.
solved

Greedy schedule [1223,2372] 350

Online greedy (full info) [1304,4261] 347

Greedy schedule (cross-val) [1337,3252] 344

Parallel schedule [1775,7571] 302

Online greedy (partial info) [2050,8127] 294

Fastest individual solver [2157,∞] 252

Online single-heur (full info) [2184,∞] 255

Online single-heur (partial info) [2835,∞] 191

Results for SAT 2007, random category

Online greedy (full info) + features [1044,3262] 365

Speedup factors

34

• Speedup factor = ratio of (lower bound on) best
solver’s avg. CPU time to that of greedy schedule
(suspend-and-resume, crossval)

Category Speedup factor
Speedup factor

w/features

random 1.61 2.24

hand-crafted 1.37 1.49

industrial 0.99 1.20

Results for SAT 2007

Speedup factors

35

Competition

Speedup
factor

(range across
categories)

Speedup factor
w/features
(range across
categories)

Boolean satisfiability 0.99 - 1.61 1.3 - 2.24

Satisfiability modulo theories 0.25 - 15.1 0.25 - 15.1

A.I. planning 1.61 1.78

Constraint satisfaction 0.28 - 2.10 0.28 - 3.03

Maximum satisfiability 0.82 - 1.31 0.99 - 1.68

0/1 integer programming 0.98 - 2.71 1.1 - 3.09

Quantified Boolean formulae 0.81 - 2.19 0.81 - 2.19

Theorem proving 0.56 - 5.49 0.58 - 4.83

Other experimental
results

• Optimization heuristics

• suppose heuristics are anytime algorithms that
return solutions of decreasing cost over time

• can modify objective function to get schedules
with good anytime behavior

• good results for 0/1 int. programming competition

• Randomized heuristics

• we develop an improved restart schedule for the
SAT solver satz-rand

36

Online Algorithms for
Maximizing Submodular

Functions

Generalizing the
greedy algorithm

• Greedy algorithm for combining heuristics
(offline + online) can be generalized to solve
wider class of problems

• Instance x becomes function from schedules
to [0,1], satisfying certain conditions.
Sufficient conditions based on submodularity

38

Problems that fit into
this framework

Problem References
Min-Sum Set Cover Feige et al. (2004)

Pipelined Set Cover
Munagala et al. (2005),

Kaplan et al. (2005)

Efficient sequences of trials Cohen et al. (2003)

Maximizing a monotone,
submodular set function

subject to knapsack constraint

Sviridenko (2004),
Krause & Guestrin (2005)

Budgeted Maximum Coverage Khuller et al. (1999)

Max k-Coverage Nemhauser et al. (1978)

cost-
minimization

coverage-
maximization

{

{

39

Problems that fit into
this framework

Problem References
Min-Sum Set Cover Feige et al. (2004)

Pipelined Set Cover
Munagala et al. (2005),

Kaplan et al. (2005)

Efficient sequences of trials Cohen et al. (2003)

Maximizing a monotone,
submodular set function

subject to knapsack constraint

Sviridenko (2004),
Krause & Guestrin (2005)

Budgeted Maximum Coverage Khuller et al. (1999)

Max k-Coverage Nemhauser et al. (1978)

cost-
minimization

coverage-
maximization

{

{

39

• Applications to database query processing,
sensor placement, and market-sharing games

Using Decision
Procedures Efficiently

for Optimization

Introduction
• Optimization problems can be solved by asking a

decision procedure questions of the form “is there
a solution of cost ≤ k?”

• E.g., state-of-the art algorithms for A.I. planning use
SAT solver to determine if plan of length ≤ k exists

• How to decide which questions to ask?

• SATPLAN starts from k=1 and works upward

• Maxplan starts from upper bound and works downward

• Is there a better way?

41

Motivations
• Query strategy can dramatically affect time needed

to find (provably) approximately optimal solution

0

600

1,200

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

no
yes

≥ 100 hours

value of k

tim
e

(s
ec

on
ds

)

42

Query Strategies
• A query (k,t) runs the decision procedure with

time limit t, and asks it “is there a solution of cost
≤ k?” Result can be yes, no, or timeout.

• A query strategy determines the next query to
execute, as a function of the results of previous
queries

43

Query Strategies
• A query (k,t) runs the decision procedure with

time limit t, and asks it “is there a solution of cost
≤ k?” Result can be yes, no, or timeout.

• A query strategy determines the next query to
execute, as a function of the results of previous
queries

43

• Notation:

• τ(k) = time required by decision proc. on input k

• OPT = minimum solution cost

Metrics & Assumptions

44

• Performance metric: worst-case competitive ratio.
Equals max, over all k, of

Metrics & Assumptions

44

time required to prove k ≤ OPT or k ≥ OPT
τ(k)

• Performance metric: worst-case competitive ratio.
Equals max, over all k, of

• Without any assumptions about τ(k), can’t do
better than trying all k-values in parallel.
Competitive ratio = #(possible k-values)

Metrics & Assumptions

44

time required to prove k ≤ OPT or k ≥ OPT
τ(k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

no
yes1 second

> 100 hours

• Performance metric: worst-case competitive ratio.
Equals max, over all k, of

• Without any assumptions about τ(k), can’t do
better than trying all k-values in parallel.
Competitive ratio = #(possible k-values)

• We’ll assume τ(k) is (approximately) increasing-
then-decreasing

Metrics & Assumptions

44

time required to prove k ≤ OPT or k ≥ OPT
τ(k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

no
yes1 second

> 100 hours

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=1

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=1 ?

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=1 ??

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=1 ??n

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=1 ??n ?

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=1 ??n ? ?

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=1 ??n ? ? y

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=1 ??n ? ? yy

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=2
n yy

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=2
n yy

?

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=2
n yy

??

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=2
n yy

??n

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=2
n yy

??n y

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=2
n yy

??n y?

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=4

n yy

n y

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=4

n yy

n y

n

k

τ(k)

Query strategy S2

• Initialize T←1

• Use two-sided binary search to find range of k-values such
that τ(k) > T

• Double T and repeat

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=4

n yy

n y

n

y

k

τ(k)

Query strategy S2

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=4

n yy

n y

n

y

k

τ(k)

• Theorem: if τ(k) is increasing-then-decreasing, then S2
has competitive ratio O(log #(possible k-values))

Query strategy S2

45

0

1

2

3

4

1 2 3 4 5 6 7 8 9 10 11 12

no
yes

T=4

n yy

n y

n

y

k

τ(k)

• Theorem: if τ(k) is increasing-then-decreasing, then S2
has competitive ratio O(log #(possible k-values))

• If τ(k) becomes increasing-then-decreasing after multiplying
each τ(k) by a factor αk ≤ Δ, ratio goes up by factor ≤ Δ

Experiments

• A.I. Planning: we use S2 to create a
variant of SATPLAN that finds
approximately optimal plans quickly

• Job shop scheduling: we use S2 to
create a variant of a branch and bound
algorithm for job shop scheduling that
finds improved upper & lower bounds

46

Job shop scheduling

• Created variant of branch and bound
algorithm of Brucker et al. (1994) that uses
query strategy S2

• To execute query (k,t), set upper bound to k+1
and see if problem is feasible

• Ran on each instance in OR library, one hour
time limit per instance

47

Job shop scheduling

48

Upper and lower bounds on OPT

Job shop scheduling

48

Instance Brucker (S2)
[lower,upper]

Brucker (orig.)
[lower,upper]

abz7 [650,712] [650,726]
abz8 [622,725] [597,767]
abz9 [644,728] [616,820]
.
yn1 [813,987] [763,992]
yn2 [835,1004] [795,1037]
yn3 [812,982] [793,1013]
yn4 [899,1158] [871,1178]

Upper and lower bounds on OPT

The Max k-Armed
Bandit Problem

The k-armed
bandit problem

• You are in a room with k
slot machines

• Pulling arm of ith machine
returns payoff drawn from
unknown distibution Di

• Given budget of n pulls, want
to maximize total payoff
received

• Researched for 50+ years

50

Machine 1

Machine 2

Machine 3

Payoff

P
r
o
b
a
b
il
it
y

Payoff

P
r
o
b
a
b
il
it
y

Payoff

P
r
o
b
a
b
il
it
y

The max k-armed
bandit problem

• You are in a room with k
slot machines

• Pulling arm of ith machine
returns payoff drawn from
unknown distribution Di

• Given budget of n pulls, want
to maximize highest payoff
received

• Introduced by Cicirello &
Smith (2003)

51

Payoff

P
r
o
b
a
b
il
it
y

Payoff

P
r
o
b
a
b
il
it
y

Payoff

P
r
o
b
a
b
il
it
y

Machine 1

Machine 2

Machine 3

The max k-armed
bandit problem

51

• Given: a single optimization
problem, k randomized
heuristics

• Each time you run a heuristic,
get a solution with certain
quality

• Given budget of n runs, want
to maximize quality of best
solution

Heuristic 1

Heuristic 2

Heuristic 3

Payoff

P
r
o
b
a
b
il
it
y

Payoff

P
r
o
b
a
b
il
it
y

Payoff

P
r
o
b
a
b
il
it
y

Our results

• Theoretical guarantees when each arm
draws payoff from a generalized extreme value
distribution

• Simple distribution-free approach that works
well in practice

• Experiments allocating time among
randomized greedy heuristics for resource-
constrained project scheduling

52

Summary & contributions
• New techniques for combining

multiple heuristics

53

`

• An online algorithm for maximizing
submodular functions

• Query strategy for solving
optimization problems using decision
algorithms

• Max k-armed bandit strategies

Thank You

