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This thesis

• Goal: boost performance of existing 
algorithms by adapting them to actual 
problem instance(s) encountered

• use black-box techniques that can be applied to 
many problem domains

• adaptation can be performed online, while solving 
a sequence of problem instances
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Outline

• Combining multiple heuristics online 
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• Online algorithms for maximizing 
submodular functions 

• Using decision procedures efficiently 
for optimization 

• The max k-armed bandit problem 



Combining Multiple 
Heuristics Online



Heuristics can have 
complementary strengths
• Running time of heuristics varies widely across 

instances  

• Can often reduce average-case running time by 
interleaving execution of multiple heuristics

Instance SatELiteGTI 
CPU (s)

MiniSat 
CPU (s)

liveness-unsat-2-01dlx_c_bp_u_f_liveness 33 15
vliw-sat-2-0/9dlx_vliw_at_b_iq6_bug4 376 ≥ 12000
vliw-sat-2-0/9dlx_vliw_at_b_iq6_bug9 ≥ 12000 131
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• Running time of randomized heuristics can vary 
widely across different random seeds

The power of restarts
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• Periodically restarting with fresh random seed can 
dramatically improve performance



Schedules

• Schedule = sequence of pairs (h,t) (a pair (h,t) 
represents running heuristic h for time t)

• Execute in                                                  
or 

8

run h1 for 
5 minutesh1

h2
run h2 for 
5 minutes

. . .

time

run h1 for 10 
minutes

run h2 for 10 
minutes

suspend-and-resume model
restart model
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The offline problem

• Given: set H of deterministic heuristics, set 
X of instances of some decision problem.  
We know how long each heuristic takes to 
solve each instance (think of X as training data)

• Goal: construct schedule S that achieves one 
of two objectives:

• maximize #(instances solved in time ≤ T), for 
some fixed T > 0

• minimize average time to solve each instance
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Computational complexity
• Let H={h1,h2,...} be a collection 

of subsets of a finite set X  

• Think of each subset h ∈  H as 
a heuristic, and each element x 
∈ X as an instance 

• h solves x in unit time if x ∈ h, 
otherwise h never solves x

10
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• Maximizing #instances solved in time ≤ T is Max k-Coverage (k=T).         
NP-hard to get 1-1/e+ε approximation, for any ε > 0 (Feige 1997)

• Minimizing avg. time to solve each instance is Min-Sum Set Cover.  
NP-hard to get 4-ε approximation, for any ε > 0 (Feige et al., 2004)



Greedy algorithm
• Let f(S) = #(instances solved by schedule S) (in restart 

model or suspend-and-resume, whichever we care about)

• Let G = empty schedule

• While f(G) < |X|:

• Find the pair a = (h,t) maximizing [f(G + a) - f(G)] / t, and 
append it to G
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• Average CPU time for G at most 4 times optimal.  
Proof generalizes analysis of greedy algorithm for 
Min-Sum Set Cover by Feige et al. (2004)

• #(instances solved in time T) at least 1-1/e times 
optimal, for certain values of T.  Follows from Khuller 
et al. (1999)



The online problem
• Given: set H of heuristics, fed sequence x1, x2, ..., xn 

of n instances

• Solve each xi (via some schedule) before moving on 
to xi+1.  Only learn outcomes of runs we actually 
perform.

• Goal is to achieve one of two objectives:

• maximize #(instances solved in time ≤ T), for some fixed 
T > 0

• minimize average time to solve each instance

• Assume for each xi, some heuristic can solve in time 
≤ B.  Also, time each heuristic takes is integer.
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A solved problem
• Suppose instead of picking a schedule, you get to 

pick one heuristic and run it for unit time.  Want to 
maximize #(instances solved)

• Define regret = maxh ∈ H #(instances h can solve in 

unit time) - #(instances you solve) 

• Any online schedule-selection algorithm has worst-
case regret ≥ n(1-1/k), where k=|H|

• But, Exp3 algorithm (Auer et al., 2002) has worst-
case expected regret O((n k log k)1/2)

13



A useful gadget
• Suppose you still have to pick one heuristic, but 

now can run for unit time in expectation

• For example, could flip coin of bias 1/t, if heads run 
h for time t.  Call this “action (h,t)”

• Using Exp3 to pick actions, worst-case expected 
regret is O((n A log A)1/2), where regret now 
defined in terms of actions and  A = #actions.

• Some algebra shows E[#(instances we solve)] is     
≥ max h,t { #(instances solved by h in time t) / t } - E[regret]
So we’re maximizing # instances solved per unit 
time...

14



A useful gadget
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solve per unit of CPU 
time I use up.
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Online greedy algorithm
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• As n→∞, online algorithm’s performance guarantees 
converge to those of offline greedy algorithm

• Analysis views online algorithm as variant of offline 
greedy algorithm



Exploiting features

• Suppose each instance is labeled with the values of 
one or more Boolean features

18

Instance industrial/
academic

small/
large

x1 industrial large

x2 industrial small

x3 academic large



Exploiting features

• Suppose each instance is labeled with the values of 
one or more Boolean features
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• Let XF = subsequence of instances with feature F

• Can get the following guarantee: simultaneously for 
each feature F, performance on XF converges to that 
of offline greedy schedule for instances in XF

• Get this guarantee using known technique: use algorithms 
for sleeping experts problem (Freund et al., 1997; Blum & 
Mansour 2007) as wrapper around multiple copies of online 
greedy algorithm



Randomized heuristics

• All results extend to randomized heuristics  

• Can have some heuristics execute in restart 
model, others in suspend-and-resume

19

run h1 for 
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h2
run h2 for 
5 minutes
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time

run h1 for 10 
more minutes
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Other theoretical 
results

• Offline and online algorithms based on 
shortest paths

• Generalization bounds for learning a 
schedule from training data

• Lower bounds on regret for online 
schedule-selection problem

20



Previous work
• Algorithm portfolios

• Idea of using schedules to improve average-case, 
offline algorithms for special cases (Huberman et 
al., 1997; Gomes & Selman 2001, ...)

• Using features to pick out a single heuristic 
(Leyton-Brown et al., 2003; Xu et al., 2007, ...)

• Restart schedules for single randomized algorithm 
(Luby et al., 1993; Gomes et al.,1998, ...)

• Exponential-time offline algorithms for computing 
task-switching schedules (Petrik 2005; Sayag et al., 2006)
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Contributions

• New techniques for combining heuristics

• consider a class of schedules that generalizes 
schedules considered in previous work

• first polynomial-time approximation 
algorithms for constructing these schedules

• online algorithms for selecting schedules 
on-the-fly while solving a sequence of problems

• can exploit features in a principled way

22



Solver competitions
• Each year, various conferences hold solver 

competitions

• Each submitted solver is run on a set of benchmark 
instances, subject to per-instance time limit

• Solvers judged on how many instances they solve and 
how fast

• How would schedules created by our algorithms 
have fared in the competitions?

• determine running time of each heuristic on each 
instance using data from competition web sites

• removed instances that no solver could solve
23



Solver competitions
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Competition Problem domain

SAT 2007 Boolean satisfiability

SMT-COMP’07 satisfiability modulo theories

CASC-J3 theorem proving

MaxSAT-2007 maximum satisfiability

PB’07 zero-one integer programming

QBFEVAL’07 quantified Boolean formulae

CPAI’06 constraint satisfaction

IPC-5 A.I. planning
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Solver
Avg. CPU

[lower,upper]
Num. 
solved

adaptg2wsat+ [2157,∞] 252

adaptg2wsat0 [2204,∞] 248

SATzilla [2275,∞] 248

ranov [2288,∞] 242

March KS [2305,∞] 257

adaptnovelty [2331,∞] 240

gnovelty+ [2359,∞] 242

KCNFS [2554,∞] 237

sapsrt [2804,∞] 188

MXC [3642,∞] 135

minisat [3676,∞] 140

SAT7 [3761,∞] 122

DEWSATZ 1A [3797,∞] 121

MiraXTv3 [3940,∞] 106

Results for SAT 2007, random category



Offline algorithms
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Offline algorithms
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Online algorithms
• We consider two feedback models

• Full information: after solving xi, we learn how long each 
heuristic would have taken to solve xi

• Partial information: only learn outcome of runs we actually 
perform
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• Evaluate online greedy algorithm in both models

• In full info model, gadget uses self-tuning version of WMR 
(Auer & Gentille, 2000) 

• In partial info model, gadget uses self-tuning version of 
Exp3 (Auer et al., 2002)



Online algorithms
• We consider two feedback models

• Full information: after solving xi, we learn how long each 
heuristic would have taken to solve xi

• Partial information: only learn outcome of runs we actually 
perform
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• Also evaluate online algorithms that solve each 
instance by choosing a single heuristic to run

• In full info model, use self-tuning version of WMR

• In partial info model, use self-tuning version of Exp3



Online algorithms
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Results for SAT 2007, random category
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Exploiting features
• Created features based on competition benchmark 

directory structure  

• For each subdirectory, have feature that is true if 
instance resides under that directory 

32
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Exploiting features
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Speedup factors

34

• Speedup factor = ratio of (lower bound on) best 
solver’s avg. CPU time to that of greedy schedule 
(suspend-and-resume, crossval)

Category Speedup factor
Speedup factor 

w/features

random 1.61 2.24

hand-crafted 1.37 1.49

industrial 0.99 1.20

Results for SAT 2007



Speedup factors

35

Competition

Speedup 
factor 

(range across 
categories)

Speedup factor  
w/features
(range across 
categories)

Boolean satisfiability 0.99 - 1.61 1.3 - 2.24

Satisfiability modulo theories 0.25 - 15.1 0.25 - 15.1

A.I. planning 1.61 1.78

Constraint satisfaction 0.28 - 2.10 0.28 - 3.03

Maximum satisfiability 0.82 - 1.31 0.99 - 1.68

0/1 integer programming 0.98 - 2.71 1.1 - 3.09

Quantified Boolean formulae 0.81 - 2.19 0.81 - 2.19

Theorem proving 0.56 - 5.49 0.58 - 4.83



Other experimental 
results

• Optimization heuristics

• suppose heuristics are anytime algorithms that 
return solutions of decreasing cost over time

• can modify objective function to get schedules 
with good anytime behavior  

• good results for 0/1 int. programming competition

• Randomized heuristics

• we develop an improved restart schedule for the 
SAT solver satz-rand

36



Online Algorithms for 
Maximizing Submodular 

Functions



Generalizing the 
greedy algorithm

• Greedy algorithm for combining heuristics 
(offline + online) can be generalized to solve 
wider class of problems

• Instance x becomes function from schedules 
to [0,1], satisfying certain conditions.  
Sufficient conditions based on submodularity

38



Problems that fit into 
this framework

Problem References
Min-Sum Set Cover Feige et al. (2004)

Pipelined Set Cover
Munagala et al. (2005),

Kaplan et al. (2005)

Efficient sequences of trials Cohen et al. (2003)

Maximizing a monotone, 
submodular set function 

subject to knapsack constraint

Sviridenko (2004),
Krause & Guestrin (2005)

Budgeted Maximum Coverage Khuller et al. (1999)

Max k-Coverage Nemhauser et al. (1978)

cost-
minimization

coverage-
maximization

{

{

39
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• Applications to database query processing, 
sensor placement, and market-sharing games



Using Decision 
Procedures Efficiently 

for Optimization



Introduction
• Optimization problems can be solved by asking a 

decision procedure questions of the form “is there 
a solution of cost ≤ k?”

• E.g., state-of-the art algorithms for A.I. planning use 
SAT solver to determine if plan of length ≤ k exists

• How to decide which questions to ask?

• SATPLAN starts from k=1 and works upward

• Maxplan starts from upper bound and works downward

• Is there a better way?

41



Motivations
• Query strategy can dramatically affect time needed 

to find (provably) approximately optimal solution
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Query Strategies
• A query (k,t) runs the decision procedure with 

time limit t, and asks it “is there a solution of cost 
≤ k?” Result can be yes, no, or timeout.

• A query strategy determines the next query to 
execute, as a function of the results of previous 
queries

43
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• Notation:

• τ(k) = time required by decision proc. on input k

• OPT = minimum solution cost



Metrics & Assumptions

44



• Performance metric: worst-case competitive ratio.  
Equals max, over all k, of
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• Performance metric: worst-case competitive ratio.  
Equals max, over all k, of

• Without any assumptions about τ(k), can’t do 
better than trying all k-values in parallel.  
Competitive ratio = #(possible k-values)

• We’ll assume τ(k) is (approximately) increasing-
then-decreasing 

Metrics & Assumptions

44

time required to prove k ≤ OPT or k ≥ OPT
τ(k)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
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Query strategy S2

• Initialize T←1 

• Use two-sided binary search to find range of k-values such 
that τ(k) > T

• Double T and repeat
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• Theorem: if τ(k) is increasing-then-decreasing, then S2 
has competitive ratio O(log #(possible k-values)) 
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• Theorem: if τ(k) is increasing-then-decreasing, then S2 
has competitive ratio O(log #(possible k-values)) 

• If τ(k) becomes increasing-then-decreasing after multiplying 
each τ(k) by a factor αk ≤ Δ, ratio goes up by factor ≤ Δ



Experiments

• A.I. Planning: we use S2 to create a 
variant of SATPLAN that finds 
approximately optimal plans quickly

• Job shop scheduling: we use S2 to 
create a variant of a branch and bound 
algorithm for job shop scheduling that 
finds improved upper & lower bounds

46



Job shop scheduling

• Created variant of branch and bound 
algorithm of Brucker et al. (1994) that uses 
query strategy S2

• To execute query (k,t), set upper bound to k+1 
and see if problem is feasible

• Ran on each instance in OR library, one hour 
time limit per instance

47



Job shop scheduling

48

Upper and lower bounds on OPT



Job shop scheduling

48

Instance Brucker (S2)
[lower,upper]

Brucker (orig.)
[lower,upper]

abz7 [650,712] [650,726]
abz8 [622,725] [597,767]
abz9 [644,728] [616,820]
. . . . . . . . .
yn1 [813,987] [763,992]
yn2 [835,1004] [795,1037]
yn3 [812,982] [793,1013]
yn4 [899,1158] [871,1178]

Upper and lower bounds on OPT



The Max k-Armed 
Bandit Problem



The k-armed 
bandit problem

• You are in a room with k 
slot machines

• Pulling arm of ith machine 
returns payoff drawn from 
unknown distibution Di

• Given budget of n pulls, want 
to maximize total payoff 
received

• Researched for 50+ years                 
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The max k-armed 
bandit problem

• You are in a room with k 
slot machines

• Pulling arm of ith machine 
returns payoff drawn from 
unknown distribution Di

• Given budget of n pulls, want 
to maximize highest payoff 
received

• Introduced by Cicirello & 
Smith (2003)

51

Payoff

P
r
o
b
a
b
il
it
y

Payoff

P
r
o
b
a
b
il
it
y

Payoff

P
r
o
b
a
b
il
it
y

Machine 1

Machine 2

Machine 3



The max k-armed 
bandit problem

51

• Given: a single optimization 
problem, k randomized 
heuristics

• Each time you run a heuristic, 
get a solution with certain 
quality

• Given budget of n runs, want 
to maximize quality of best 
solution
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Our results

• Theoretical guarantees when each arm 
draws payoff from a generalized extreme value 
distribution

• Simple distribution-free approach that works 
well in practice

• Experiments allocating time among 
randomized greedy heuristics for resource-
constrained project scheduling

52



Summary & contributions
• New techniques for combining 

multiple heuristics 

53

`

• An online algorithm for maximizing 
submodular functions

• Query strategy for solving 
optimization problems using decision 
algorithms 

• Max k-armed bandit strategies 



Thank You


