
No-Regret Algorithms for Unconstrained
Online Convex Optimization

Matthew Streeter
Duolingo, Inc.∗

Pittsburgh, PA 15232
matt@duolingo.com

H. Brendan McMahan
Google, Inc.

Seattle, WA 98103
mcmahan@google.com

Abstract

Some of the most compelling applications of online convex optimization, includ-
ing online prediction and classification, are unconstrained: the natural feasible set
is Rn. Existing algorithms fail to achieve sub-linear regret in this setting unless
constraints on the comparator point x̊ are known in advance. We present algo-
rithms that, without such prior knowledge, offer near-optimal regret bounds with
respect to any choice of x̊. In particular, regret with respect to x̊ = 0 is constant.
We then prove lower bounds showing that our guarantees are near-optimal in this
setting.

1 Introduction

Over the past several years, online convex optimization has emerged as a fundamental tool for solv-
ing problems in machine learning (see, e.g., [3, 12] for an introduction). The reduction from general
online convex optimization to online linear optimization means that simple and efficient (in memory
and time) algorithms can be used to tackle large-scale machine learning problems. The key theoret-
ical techniques behind essentially all the algorithms in this field are the use of a fixed or increasing
strongly convex regularizer (for gradient descent algorithms, this is equivalent to a fixed or decreas-
ing learning rate sequence). In this paper, we show that a fundamentally different type of algorithm
can offer significant advantages over these approaches. Our algorithms adjust their learning rates
based not just on the number of rounds, but also based on the sum of gradients seen so far. This
allows us to start with small learning rates, but effectively increase the learning rate if the problem
instance warrants it.

This approach produces regret bounds of the formO
(
R
√
T log((1+R)T)

)
, whereR = ‖x̊‖2 is the

L2 norm of an arbitrary comparator. Critically, our algorithms provide this guarantee simultaneously
for all x̊ ∈ Rn, without any need to know R in advance. A consequence of this is that we can
guarantee at most constant regret with respect to the origin, x̊ = 0. This technique can be applied to
any online convex optimization problem where a fixed feasible set is not an essential component of
the problem. We discuss two applications of particular interest below:

Online Prediction Perhaps the single most important application of online convex optimization
is the following prediction setting: the world presents an attribute vector at ∈ Rn; the prediction
algorithm produces a prediction σ(at · xt), where xt ∈ Rn represents the model parameters, and
σ : R → Y maps the linear prediction into the appropriate label space. Then, the adversary reveals
the label yt ∈ Y , and the prediction is penalized according to a loss function ` : Y × Y → R.
For appropriately chosen σ and `, this becomes a problem of online convex optimization against
functions ft(x) = `(σ(at ·x), yt). In this formulation, there are no inherent restrictions on the model
coefficients x ∈ Rn. The practitioner may have prior knowledge that “small” model vectors are more

∗This work was performed while the author was at Google.

1

likely than large ones, but this is rarely best encoded as a feasible set F , which says: “all xt ∈ F are
equally likely, and all other xt are ruled out.” A more general strategy is to introduce a fixed convex
regularizer: L1 and L2

2 penalties are common, but domain-specific choices are also possible. While
algorithms of this form have proved very effective at solving these problems, theoretical guarantees
usually require fixing a feasible set of radius R, or at least an intelligent guess of the norm of an
optimal comparator x̊.

The Unconstrained Experts Problem and Portfolio Management In the classic problem of
predicting with expert advice (e.g., [3]), there are n experts, and on each round t the player selects
an expert (say i), and obtains reward gt,i from a bounded interval (say [−1, 1]). Typically, one uses
an algorithm that proposes a probability distribution pt on experts, so the expected reward is pt · gt.
Our algorithms apply to an unconstrained version of this problem: there are still n experts with
payouts in [−1, 1], but rather than selecting an individual expert, the player can place a “bet” of
xt,i on each expert i, and then receives reward

∑
i xt,igt,i = xt · gt. The bets are unconstrained

(betting a negative value corresponds to betting against the expert). In this setting, a natural goal is
the following: place bets so as to achieve as much reward as possible, subject to the constraint that
total losses are bounded by a constant (which can be set equal to some starting budget which is to be
invested). Our algorithms can satisfy constraints of this form because regret with respect to x̊ = 0
(which equals total loss) is bounded by a constant.

It is useful to contrast our results in this setting to previous applications of online convex optimiza-
tion to portfolio management, for example [6] and [2]. By applying algorithms for exp-concave
loss functions, they obtain log-wealth within O(log(T)) of the best constant rebalanced portfolio.
However, this approach requires a “no-junk-bond” assumption: on each round, for each investment,
you always retain at least an α > 0 fraction of your initial investment. While this may be realistic
(though not guaranteed!) for blue-chip stocks, it certainly is not for bets on derivatives that can
lose all their value unless a particular event occurs (e.g., a stock price crosses some threshold). Our
model allows us to handle such investments: if we play xi > 0, an outcome of gi = −1 corresponds
exactly to losing 100% of that investment. Our results imply that if even one investment (out of
exponentially many choices) has significant returns, we will increase our wealth exponentially.

Notation and Problem Statement For the algorithms considered in this paper, it will be more
natural to consider reward-maximization rather than loss-minimization. Therefore, we consider
online linear optimization where the goal is to maximize cumulative reward given adversarially
selected linear reward functions ft(x) = gt · x. On each round t = 1 . . . T , the algorithm selects a
point xt ∈ Rn, receives reward ft(xt) = gt · xt, and observes gt. For simplicity, we assume gt,i ∈
[−1, 1], that is, ‖gt‖∞ ≤ 1. If the real problem is against convex loss functions `t(x), they can be
converted to our framework by taking gt = −O`t(xt) (see pseudo-code for REWARD-DOUBLING),
using the standard reduction from online convex optimization to online linear optimization [13].

We use the compressed summation notation g1:t =
∑t
s=1 gs for both vectors and scalars. We study

the reward of our algorithms, and their regret against a fixed comparator x̊:

Reward ≡
T∑
t=1

gt · xt and Regret(̊x) ≡ g1:T · x̊−
T∑
t=1

gt · xt.

Comparison of Regret Bounds The primary contribution of this paper is to establish matching
upper and lower bounds for unconstrained online convex optimization problems, using algorithms
that require no prior information about the comparator point x̊. Specifically, we present an algo-
rithm that, for any x̊ ∈ Rn, guarantees Regret(̊x) ≤ O

(
‖x̊‖2

√
T log((1 + ‖x̊‖2)

√
T)
)
. To obtain

this guarantee, we show that it is sufficient (and necessary) that reward is Ω(exp(|g1:T |/
√
T)) (see

Theorem 1). This shift of emphasis from regret-minimization to reward-maximization eliminates
the quantification on x̊, and may be useful in other contexts.

Table 1 compares the bounds for REWARD-DOUBLING (this paper) to those of two previous algo-
rithms: online gradient descent [13] and projected exponentiated gradient descent [8, 12]. For each

Our bounds are not directly comparable to the bounds cited above: a O(log(T)) regret bound on log-
wealth implies wealth at least O

(
OPT/T

)
, whereas we guarantee wealth like O

(
OPT’ −

√
T
)
. But more

importantly, the comparison classes are different.

2

Assuming ‖gt‖2 ≤ 1:
x̊ = 0 ‖x̊‖2 ≤ R Arbitrary x̊

Gradient Descent, η = R√
T

R
√
T R

√
T ‖x̊‖2T

REWARD-DOUBLING ε R
√
T log

(
n(1+R)T

ε

)
‖x̊‖2

√
T log

(
n(1+‖x̊‖2)T

ε

)
Assuming ‖gt‖∞ ≤ 1:

x̊ = 0 ‖x̊‖1 ≤ R Arbitrary x̊
Exponentiated G.D. R

√
T log n R

√
T log n ‖x̊‖1T

REWARD-DOUBLING ε R
√
T log

(
n(1+R)T

ε

)
‖x̊‖1

√
T log

(
n(1+‖x̊‖1)

√
T

ε

)
Table 1: Worst-case regret bounds for various algorithms (up to constant factors). Exponentiated
G.D. uses feasible set {x : ‖x‖1 ≤ R}, and REWARD-DOUBLING uses εi = ε

n in both cases.

algorithm, we consider a fixed choice of parameter settings and then look at how regret changes as
we vary the comparator point x̊.

Gradient descent is minimax-optimal [1] when the comparator point is contained in a hypershere
whose radius is known in advance (‖x̊‖2 ≤ R) and gradients are sparse (‖gt‖2 ≤ 1, top table).
Exponentiated gradient descent excels when gradients are dense (‖gt‖∞ ≤ 1, bottom table) but the
comparator point is sparse (‖x̊‖1 ≤ R for R known in advance). In both these cases, the bounds for
REWARD-DOUBLING match those of the previous algorithms up to logarithmic factors, even when
they are tuned optimally with knowledge of R.

The advantage of REWARD-DOUBLING shows up when the guess of R used to tune the compet-
ing algorithms turns out to be wrong. When x̊ = 0, REWARD-DOUBLING offers constant regret
compared to Ω(

√
T) for the other algorithms. When x̊ can be arbitrary, only REWARD-DOUBLING

offers sub-linear regret (and in fact its regret bound is optimal, as shown in Theorem 8).

In order to guarantee constant origin-regret, REWARD-DOUBLING frequently “jumps” back to
playing the origin, which may be undesirable in some applications. In Section 4 we introduce
SMOOTH-REWARD-DOUBLING, which achieves similar guarantees without resetting to the origin.

Related Work Our work is related, at least in spirit, to the use of a momentum term in stochastic
gradient descent for back propagation in neural networks [7, 11, 9]. These results are similar in
motivation in that they effectively yield a larger learning rate when many recent gradients point in
the same direction.

In Follow-The-Regularized-Leader terms, the exponentiated gradient descent algorithm with unnor-
malized weights of Kivinen and Warmuth [8] plays xt+1 = arg minx∈Rn

+
g1:t · x+ 1

η (x log x− x),

which has closed-form solution xt+1 = exp(−ηg1:t). Like our algorithm, this algorithm moves
away from the origin exponentially fast, but unlike our algorithm it can incur arbitrarily large regret
with respect to x̊ = 0. Theorem 9 shows that no algorithm of this form can provide bounds like the
ones proved in this paper.

Hazan and Kale [5] give regret bounds in terms of the variance of the gt. Letting G = |g1:t| and
H =

∑T
t=1 g

2
t , they prove regret bounds of the form O(

√
V) where V = H − G2/T . This result

has some similarity to our work in that G/
√
T =

√
H − V , and so if we hold H constant, then

when V is low, the critical ratio G/
√
T that appears in our bounds is large. However, they consider

the case of a known feasible set, and their algorithm (gradient descent with a constant learning rate)
cannot obtain bounds of the form we prove.

2 Reward and Regret

In this section we present a general result that converts lower bounds on reward into upper bounds
on regret, for one-dimensional online linear optimization. In the unconstrained setting, this result
will be sufficient to provide guarantees for general n-dimensional online convex optimization.

3

Theorem 1. Consider an algorithm for one-dimensional online linear optimization that, when run
on a sequence of gradients g1, g2, . . . , gT , with gt ∈ [−1, 1] for all t, guarantees

Reward ≥ κ exp (γ|g1:T |)− ε, (1)
where γ, κ > 0 and ε ≥ 0 are constants. Then, against any comparator x̊ ∈ [−R,R], we have

Regret(̊x) ≤ R

γ

(
log

(
R

κγ

)
− 1

)
+ ε, (2)

letting 0 log 0 = 0 when R = 0. Further, any algorithm with the regret guarantee of Eq. (2) must
guarantee the reward of Eq. (1).

We give a proof of this theorem in the appendix. The duality between reward and regret can also be
seen as a consequence of the fact that exp(x) and y log y − y are convex conjugates. The γ term
typically contains a dependence on T like 1/

√
T . This bound holds for all R, and so for some small

R the log term becomes negative; however, for real algorithms the ε term will ensure the regret
bound remains positive. The minus one can of course be dropped to simplify the bound further.

3 Gradient Descent with Increasing Learning Rates

In this section we show that allowing the learning rate of gradient descent to sometimes increase
leads to novel theoretical guarantees.

To build intuition, consider online linear optimization in one dimension, with gradients
g1, g2, . . . , gT , all in [−1, 1]. In this setting, the reward of unconstrained gradient descent has a
simple closed form:
Lemma 2. Consider unconstrained gradient descent in one dimension, with learning rate η. On
round t, this algorithm plays the point xt = ηg1:t−1. Letting G = |g1:t| and H =

∑T
t=1 g

2
t , the

cumulative reward of the algorithm is exactly

Reward =
η

2

(
G2 −H

)
.

We give a simple direct proof in Appendix A. Perhaps surprisingly, this result implies that the reward
is totally independent of the order of the linear functions selected by the adversary. Examining the
expression in Lemma 2, we see that the optimal choice of learning rate η depends fundamentally on
two quantities: the absolute value of the sum of gradients (G), and the sum of the squared gradients
(H). If G2 > H , we would like to use as large a learning rate as possible in order to maximize
reward. In contrast, if G2 < H , the algorithm will obtain negative reward, and the best it can do is
to cut its losses by setting η as small as possible.

One of the motivations for this work is the observation that the state-of-the-art online gradient de-
scent algorithms adjust their learning rates based only on the observed value ofH (or its upper bound
T); for example [4, 10]. We would like to increase reward by also accounting for G. But unlike H ,
which is monotonically increasing with time, G can both increase and decrease. This makes simple
guess-and-doubling tricks fail when applied to G, and necessitates a more careful approach.

3.1 Analysis in One Dimension

In this section we analyze algorithm REWARD-DOUBLING-1D (Algorithm 1), which consists of a
series of epochs. We suppose for the moment that an upper bound H̄ on H =

∑T
t=1 g

2
t is known

in advance. In the first epoch, we run gradient descent with a small initial learning rate η = η1.
Whenever the total reward accumulated in the current epoch reaches ηH̄ , we double η and start a
new epoch (returning to the origin and forgetting all previous gradients except the most recent one).

Lemma 3. Applied to a sequence of gradients g1, g2, . . . , gT , all in [−1, 1], whereH =
∑T
t=1 g

2
t ≤

H̄ , REWARD-DOUBLING-1D obtains reward satisfying

Reward =

T∑
t=1

xtgt ≥
1

4
η1H̄ exp

(
a
|g1:T |√
H̄

)
− η1H̄, (3)

for a = log(2)/
√

3.

4

Algorithm 1 REWARD-DOUBLING-1D
Parameters: initial learning rate η1, upper
bound H̄ ≥

∑T
t=1 g

2
t .

Initialize x1 ← 0, i← 1, and Q1 ← 0.
for t = 1, 2, . . . , T do

Play xt, and receive reward xtgt.
Qi ← Qi + xtgt.
if Qi < ηiH̄ then
xt+1 ← xt + ηigt.

else
i← i+ 1.
ηi ← 2ηi−1; Qi ← 0.
xt+1 ← 0 + ηigt.

Algorithm 2 REWARD-DOUBLING

Parameters: maximum origin-regret εi
for 1 ≤ i ≤ n.
for i = 1, 2, . . . , n do

Let Ai be a copy of algorithm
REWARD-DOUBLING-1D-GUESS
(see Theorem 4), with parameter εi.

for t = 1, 2, . . . , T do
Play xt, with xt,i selected by Ai.
Receive gradient vector gt = −Oft(xt).
for i = 1, 2, . . . , n do

Feed back gt,i to Ai.

Proof. Suppose round T occurs during the k’th epoch. Because epoch i can only come to an end if
Qi ≥ ηiH̄ , where ηi = 2i−1η1, we have

Reward =

k∑
i=1

Qi ≥

(
k−1∑
i=1

2i−1η1H̄

)
+Qk =

(
2k−1 − 1

)
η1H̄ +Qk . (4)

We now lower bound Qk. For i = 1, . . . , k let ti denote the round on which Qi is initialized to 0,
with t1 ≡ 1, and define tk+1 ≡ T . By construction, Qi is the total reward of a gradient descent
algorithm that is active on rounds ti through ti+1 inclusive, and that uses learning rate ηi (note that
on round ti, this algorithm gets 0 reward and we initialize Qi to 0 on that round). Thus, by Lemma
2, we have that for any i,

Qi =
ηi
2

(
(gti:ti+1

)2 −
ti+1∑
s=ti

g2
s

)
≥ −ηi

2
H̄ .

Applying this bound to epoch k, we have Qk ≥ − 1
2ηkH̄ = −2k−2η1H̄ . Substituting into (4) gives

Reward ≥ η1H̄(2k−1 − 1− 2k−2) = η1H̄(2k−2 − 1) . (5)

We now show that k ≥ |g1:T |√
3H̄

. At the end of round ti+1−1, we must have hadQi < ηiH̄ (otherwise
epoch i+ 1 would have begun earlier). Thus, again using Lemma 2,

ηi
2

(
(gti:ti+1−1)2 − H̄

)
≤ ηiH̄

so |gti:ti+1−1| ≤
√

3H̄ . Thus,

|g1:T | ≤
k∑
i=1

|gti:ti+1−1| ≤ k
√

3H̄ .

Rearranging gives k ≥ |g1:T |√
3H̄

, and combining with Eq. (5) proves the lemma.

We can now apply Theorem 1 to the reward (given by Eq. (3)) of REWARD-DOUBLING-1D to show

Regret(̊x) ≤ bR
√
H̄

(
log

(
4Rb
√
H̄

η1

)
− 1

)
+ η1H̄ (6)

for any x̊ ∈ [−R,R], where b = a−1 =
√

3/ log(2) < 2.5. When the feasible set is also fixed in
advance, online gradient descent with a fixed learning obtains a regret bound of O(R

√
T). Suppose

we use the estimate H̄ = T . By choosing η1 = 1
T , we guarantee constant regret against the origin,

x̊ = 0 (equivalently, constant total loss). Further, for any feasible set of radius R, we still have

5

worst-case regret of at most O(R
√
T log((1 + R)T)), which is only modestly worse than that of

gradient descent with the optimal R known in advance.

The need for an upper bound H̄ can be removed using a standard guess-and-doubling approach, at
the cost of a constant factor increase in regret (see appendix for proof).
Theorem 4. Consider algorithm REWARD-DOUBLING-1D-GUESS, which behaves as follows. On
each era i, the algorithm runs REWARD-DOUBLING-1D with an upper bound of H̄i = 2i−1, and
initial learning rate ηi1 = ε2−2i. An era ends when H̄i is no longer an upper bound on the sum of
squared gradients seen during that era. Letting c =

√
2√

2−1
, this algorithm has regret at most

Regret ≤ cR
√
H + 1

(
log

(
R

ε
(2H + 2)5/2

)
− 1

)
+ ε.

3.2 Extension to n dimensions

To extend our results to general online convex optimization, it is sufficient to run a separate copy of
REWARD-DOUBLING-1D-GUESS for each coordinate, as is done in REWARD-DOUBLING (Algo-
rithm 2). The key to the analysis of this algorithm is that overall regret is simply the sum of regret
on n one-dimensional subproblems which can be analyzed independently.
Theorem 5. Given a sequence of convex loss functions f1, f2, . . . , fT from Rn to R,
REWARD-DOUBLING with εi = ε

n has regret bounded by

Regret(̊x) ≤ ε+ c

n∑
i=1

|̊xi|
√
Hi + 1

(
log
(n
ε
|̊xi|(2Hi + 2)5/2

)
− 1
)

≤ ε+ c‖x̊‖2
√
H + n

(
log
(n
ε
‖x̊‖22(2H + 2)5/2

)
− 1
)

for c =
√

2√
2−1

, where Hi =
∑T
t=1 g

2
t,i and H =

∑T
t=1 ‖gt‖22.

Proof. Fix a comparator x̊. For any coordinate i, define

Regreti =

T∑
t=1

x̊igt,i −
T∑
t=1

xt,igt,i .

Observe that
n∑
i=1

Regreti =

T∑
t=1

x̊ · gt −
T∑
t=1

xt · gt = Regret(̊x) .

Furthermore, Regreti is simply the regret of REWARD-DOUBLING-1D-GUESS on the gradient se-
quence g1,i, g2,i, . . . , gT,i. Applying the bound of Theorem 4 to each Regreti term completes the
proof of the first inequality. For the second inequality, let ~H be a vector whose ith component is√
Hi + 1, and let ~x ∈ Rn where ~xi = |̊xi|. Using the Cauchy-Schwarz inequality, we have

n∑
i=1

|̊xi|
√
Hi + 1 = ~x · ~H ≤ ‖x̊‖2 ‖ ~H‖2 = ‖x̊‖2

√
H + n .

This, together with the fact that log(|̊xi|(2Hi + 2)5/2) ≤ log(‖x̊‖22(2H + 2)5/2), suffices to prove
second inequality.

In some applications, n is not known in advance. In this case, we can set εi = ε
i2 for the ith

coordinate we encounter, and get the same bound up to constant factors.

4 An Epoch-Free Algorithm

In this section we analyze SMOOTH-REWARD-DOUBLING, a simple algorithm that achieves bounds
comparable to those of Theorem 4, without guessing-and-doubling. We consider only the 1-d prob-
lem, as the technique of Theorem 5 can be applied to extend to n dimensions. Given a parameter

6

η > 0, we achieve

Regret ≤ R
√
T

(
log

(
RT 3/2

η

)
− 1

)
+ 1.76η, (7)

for all T and R, which is better (by constant factors) than Theorem 4 when gt ∈ {−1, 1} (which
implies T = H). The bound can be worse on a problems where H < T .

The idea of the algorithm is to maintain the invariant that our cumulative reward, as a function of
g1:t and t, satisfies Reward ≥ N(g1:t, t), for some fixed function N . Because reward changes by
gtxt on round t, it suffices to guarantee that for any g ∈ [−1, 1],

N(g1:t, t) + gxt+1 ≥ N(g1:t + g, t+ 1) (8)

where xt+1 is the point the algorithm plays on round t+ 1, and we assume N(0, 1) = 0.

This inequality is approximately satisfied (for small g) if we choose

xt+1 =
∂N(g1:t + g, t)

∂g
≈ N(g1:t + g, t)−N(g1:t, t)

g
≈ N(g1:t + g, t+ 1)−N(g1:t, t)

g
.

This suggests that if we want to maintain reward at least N(g1:t, t) = 1
t (exp(|g1:t|/

√
t) − 1) , we

should set xt+1 ≈ sign(g1:t)t
−3/2 exp

(
|g1:t|√
t

)
. The following theorem (proved in the appendix)

provides an inductive analysis of an algorithm of this form.
Theorem 6. Fix a sequence of reward functions ft(x) = gtx with gt ∈ [−1, 1], and let Gt = |g1:t|.
We consider SMOOTH-REWARD-DOUBLING, which plays 0 on round 1 and whenever Gt = 0;
otherwise, it plays

xt+1 = η sign(g1:t)B(Gt, t+ 5) (9)
with η > 0 a learning-rate parameter and

B(G, t) =
1

t3/2
exp

(
G√
t

)
. (10)

Then, at the end of each round t, this algorithm has

Reward(t) ≥ η 1

t+ 5
exp

(
Gt√
t+ 5

)
− 1.76η.

Two main technical challenges arise in the proof: first, we prove a result like Eq. (8) forN(g1:t, t) =
(1/t) exp

(
|g1:t|/

√
t
)
. However, this Lemma only holds for t ≥ 6 and when the sign of g1:t doesn’t

change. We account for this by showing that a small modification toN (costing only a constant over
all rounds) suffices.

By running this algorithm independently for each coordinate using an appropriate choice of η, one
can obtain a guarantee similar to that of Theorem 5.

5 Lower Bounds

As with our previous results, it is sufficient to show a lower bound in one dimension, as it can then
be replicated independently in each coordinate to obtain an n dimensional bound. Note that our
lower bound contains the factor log(|̊x|

√
T), which can be negative when x̊ is small relative to T ,

hence it is important to hold x̊ fixed and consider the behavior as T → ∞. Here we give only a
proof sketch; see Appendix A for the full proof.
Theorem 7. Consider the problem of unconstrained online linear optimization in one dimension,
and an online algorithm that guarantees origin-regret at most ε. Then, for any fixed comparator x̊,
and any integer T0, there exists a gradient sequence {gt} ∈ [−1, 1]T of length T ≥ T0 for which
the algorithm’s regret satisfies

Regret(̊x) ≥ 0.336|̊x|

√√√√T log

(
|̊x|
√
T

ε

)
.

7

Proof. (Sketch) Assume without loss of generality that x̊ > 0. Let Q be the algorithm’s reward
when each gt is drawn independently uniformly from {−1, 1}. We have E[Q] = 0, and because the
algorithm guarantees origin-regret at most ε, we haveQ ≥ −ε with probability 1. LettingG = g1:T ,
it follows that for any threshold Z = Z(T),

0 = E[Q]

= E[Q|G < Z] · Pr[G < Z] + E[Q|G ≥ Z] · Pr[G ≥ Z]

≥ −εPr[G < Z] + E[Q|G ≥ Z] · Pr[G ≥ Z]

> −ε+ E[Q|G ≥ Z] · Pr[G ≥ Z] .
Equivalently,

E[Q|G ≥ Z] <
ε

Pr[G ≥ Z]
.

We choose Z(T) =
√
kT , where k =

⌊
log(R

√
T
ε)/ log(p−1)

⌋
. Here R = |̊x| and p > 0 is a

constant chosen using binomial distribution lower bounds so that Pr[G ≥ Z] ≥ pk. This implies

E[Q|G ≥ Z] < εp−k = ε exp
(
k log p−1

)
≤ R
√
T .

This implies there exists a sequence with G ≥ Z and Q < R
√
T . On this sequence, regret is at least

Gx̊−Q ≥ R
√
kT −R

√
T = Ω(R

√
kT).

Theorem 8. Consider the problem of unconstrained online linear optimization in Rn, and consider
an online algorithm that guarantees origin-regret at most ε. For any radius R, and any T0, there ex-
ists a gradient sequence gradient sequence {gt} ∈ ([−1, 1]n)T of length T ≥ T0, and a comparator
x̊ with ‖x̊‖1 = R, for which the algorithm’s regret satisfies

Regret(̊x) ≥ 0.336

n∑
i=1

|̊xi|

√√√√T log

(
|̊xi|
√
T

ε

)
.

Proof. For each coordinate i, Theorem 7 implies that there exists a T ≥ T0 and a sequence of
gradients gt,i such that

T∑
t=1

x̊igt,i −
T∑
t=1

xt,igt,i ≥ 0.336|̊xi|

√√√√T log

(
|̊xi|
√
T

ε

)
.

(The proof of Theorem 7 makes it clear that we can use the same T for all i.) Summing this
inequality across all n coordinates then gives the regret bound stated in the theorem.

The following theorem presents a stronger negative result for Follow-the-Regularized-Leader algo-
rithms with a fixed regularizer: for any such algorithm that guarantees origin-regret at most εT after
T rounds, worst-case regret with respect to any point outside [−εT , εT] grows linearly with T .
Theorem 9. Consider a Follow-The-Regularized-Leader algorithm that sets

xt = arg min
x

(g1:t−1x+ ψT (x))

where ψT is a convex, non-negative function with ψT (0) = 0. Let εT be the maximum origin-regret
incurred by the algorithm on a sequence of T gradients. Then, for any x̊ with |̊x| > εT , there exists a
sequence of T gradients such that the algorithm’s regret with respect to x̊ is at least T−1

2 (|̊x| − εT).

In fact, it is clear from the proof that the above result holds for any algorithm that selects xt+1 purely
as a function of g1:t (in particular, with no dependence on t).

6 Future Work

This work leaves open many interesting questions. It should be possible to apply our techniques
to problems that do have constrained feasible sets; for example, it is natural to consider the uncon-
strained experts problem on the positive orthant. While we believe this extension is straightforward,
handling arbitrary non-axis-aligned constraints will be more difficult. Another possibility is to de-
velop an algorithm with bounds in terms of H rather than T that doesn’t use a guess and double
approach.

8

References
[1] Jacob Abernethy, Peter L. Bartlett, Alexander Rakhlin, and Ambuj Tewari. Optimal strategies

and minimax lower bounds for online convex games. In COLT, 2008.
[2] Amit Agarwal, Elad Hazan, Satyen Kale, and Robert E. Schapire. Algorithms for portfolio

management based on the Newton method. In ICML, 2006.
[3] Nicolò Cesa-Bianchi and Gabor Lugosi. Prediction, Learning, and Games. Cambridge Uni-

versity Press, New York, NY, USA, 2006. ISBN 0521841089.
[4] John Duchi, Elad Hazan, and Yoram Singer. Adaptive subgradient methods for online learning

and stochastic optimization. In COLT, 2010.
[5] Elad Hazan and Satyen Kale. Extracting certainty from uncertainty: Regret bounded by varia-

tion in costs. In COLT, 2008.
[6] Elad Hazan and Satyen Kale. On stochastic and worst-case models for investing. In Advances

in Neural Information Processing Systems 22. 2009.
[7] Robert A. Jacobs. Increased rates of convergence through learning rate adaptation. Neural

Networks, 1987.
[8] Jyrki Kivinen and Manfred Warmuth. Exponentiated Gradient Versus Gradient Descent for

Linear Predictors. Journal of Information and Computation, 132, 1997.
[9] Todd K. Leen and Genevieve B. Orr. Optimal stochastic search and adaptive momentum. In

NIPS, 1993.
[10] H. Brendan McMahan and Matthew Streeter. Adaptive bound optimization for online convex

optimization. In COLT, 2010.
[11] Barak Pearlmutter. Gradient descent: Second order momentum and saturating error. In NIPS,

1991.
[12] Shai Shalev-Shwartz. Online learning and online convex optimization. Foundations and Trends

in Machine Learning, 4(2):107–194, 2012.
[13] Martin Zinkevich. Online convex programming and generalized infinitesimal gradient ascent.

In ICML, 2003.

9

