
Using Decision Procedures Efficiently for Optimization

Matthew Streeter Stephen F. Smith
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{matts,sfs}@cs.cmu.edu

Abstract

Optimization problems are often solved by making repeated
calls to a decision procedure that answers questions of the
form “Does there exist a solution with cost at mostk?”. In
general the time required by the decision procedure varies
widely as a function ofk, so it is natural to seek a query
strategy that minimizes the time required to find an (approxi-
mately) optimal solution. We present a simple query strategy
with attractive theoretical guarantees. In case the same de-
cision procedure is used for multiple optimization problems,
we discuss how to tailor the query strategy to the sequence
of problems encountered. We demonstrate the power of our
query strategy by using it to create (i) a modified version
of SatPlan that finds provably approximately optimal plans
quickly and (ii) a modified branch and bound algorithm for
job shop scheduling that yields improved upper and lower
bounds.

Introduction
Optimization problems are often solved using an algorithm
for the corresponding decision problem as a subroutine.
Each query to the decision procedure can be represented as a
pair 〈k, t〉, wheret is a bound on the CPU time the decision
procedure may consume in answering the question “Does
there exist a solution with cost at mostk?”. The result of
a query is either a (provably correct) “yes” or “no” answer
or a timeout. Aquery strategyis a rule for determining the
next query〈k, t〉 as a function of the responses to previous
queries.

The performance of a query strategy can be measured in
several ways. Given a fixed query strategy and a fixed mini-
mization problem, letl(T) denote the lower bound (i.e., the
largestk that elicited a “no” response plus one) obtained by
running the query strategy for a total ofT time units; and let
u(T) be the corresponding upper bound. A natural goal is
for u(T) to decrease as quickly as possible. Alternatively,
we might want to achieveu(T) ≤ αl(T) in the minimum
possible time for some desired approximation ratioα ≥ 1.

In this paper we study the problem of designing query
strategies. Our goal is to devise strategies that do well with
respect to natural performance criteria such as the ones just

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

described, when applied to decision procedures whose be-
havior (i.e., how the required CPU time varies as a function
of k) is typical of the procedures used in practice.

Motivations
The two winners from the optimal track of last year’s In-
ternational Planning Competition were SatPlan (Kautz, Sel-
man, & Hoffmann 2006) and MaxPlan (Xing, Chen, &
Zhang 2006). Both planners find a minimum-makespan plan
by making a series of calls to a SAT solver, where each call
determines whether there exists a feasible plan of makespan
≤ k (where the value ofk varies across calls). One of the
differences between the two planners is that SatPlan uses the
“ramp-up” query strategy (in which theith query is〈i,∞〉),
whereas MaxPlan uses the “ramp-down” strategy (in which
theith query is〈U − i,∞〉, whereU is an upper bound ob-
tained using heuristics).

0

600

1200

1 6 11 16 21 26

Makespan bound (k)

C
P
U

 t
im

e
 (

s
e
c
o
n

d
s
) no

yes

> 100 hours

timeout

Figure 1: Behavior of the SAT solversiege running on
formulae generated by SatPlan to solve instancep17 from
the pathways domain of the 2006 International Planning
Competition.

To appreciate the importance of query strategies, con-
sider Figure 1, which shows the CPU time required by
siege (the SAT solver used by SatPlan) as a function of
the makespan boundk, on a benchmark instance from the
competition. For most values ofk the solver terminates in
under one minute; fork = 19 andk = 21 the solver requires

10-20 minutes; and fork = 20 the solver was run unsuc-
cessfully for over 100 hours. Because only the queries with
k ≥ 21 return a “yes” answer, the ramp-up query strategy
(used by SatPlan) does not find a feasible plan after running
for 100 hours, while the ramp-down strategy returns a feasi-
ble plan but does not yield any non-trivial lower bounds on
the optimum makespan. In this example, the time required
by any query strategy to obtain aprovably optimalplan is
dominated by the time required to run the decision procedure
with inputk = 20. On the other hand, executing the queries
〈18,∞〉 and〈23,∞〉 takes less than two minutes and yields
a plan whose makespan is provably at most23

18+1 ≈ 1.21
times optimal. Thus, the choice of query strategy has a dra-
matic effect on the time required to obtain aprovably ap-
proximately optimalsolution. For planning problems where
provably optimal plans are currently out of reach, obtaining
provably approximately optimal plans quickly is a natural
goal.

Summary of results
In this paper we consider the problem of devising query
strategies in two settings. In thesingle-instancesetting, we
are confronted with a single optimization problem, and wish
to obtain an (approximately) optimal solution as quickly as
possible. In this setting we provide a simple query strat-
egyS2, and analyze its performance in terms of a parameter
that captures the unpredictability of the decision procedure’s
behavior. We then show that our performance guarantee is
optimal up to constant factors.

In themultiple-instancesetting, we use the same decision
procedure to solve a number of optimization problems, and
our goal is to learn from experience in order to improve per-
formance. In this setting, we prove that computing an opti-
mal query strategy is NP-hard, and discuss how algorithms
from machine learning theory can be used to select query
strategies online.

In the experimental section of our paper, we demonstrate
that query strategyS2 can be used to create improved ver-
sions of state-of-the-art algorithms for planning and job
shop scheduling. In the course of the latter experiments
we develop a simple method for applying query strategies
to branch and bound algorithms, which seems likely to be
useful in other domains besides job shop scheduling.

Related work
The ramp-up strategy was used in the original GraphPlan
algorithm (Blum & Furst 1997), and is conceptually similar
to iterative deepening (Korf 1985).

Alternatives to the ramp-up strategy were investigated by
Rintanen (2004), who proposed two algorithms. Algorithm
A runs the decision procedure on the firstn decision prob-
lems in parallel, each at equal strength, wheren is a pa-
rameter. Algorithm B runs the decision procedure on all
decision problems simultaneously, with theith problem re-
ceiving a fraction of the CPU time proportional toγi, where
γ ∈ (0, 1) is a parameter. Rintanen showed that Algorithm
B could yield dramatic performance improvements relative
to the ramp-up strategy.

Our query strategyS2 exploits binary search and is quite
different from the three strategies just discussed. In the ex-
perimental section of our paper, we compareS2 to the ramp-
up strategy and to a geometric strategy based on Algorithm
B.

Preliminaries
In this paper we are interested in solving minimization prob-
lems of the form

OPT = min
x∈X

c(x)

whereX is an arbitrary set andc : X → Z+ is a function as-
signing a positive integer cost to eachx ∈ X . We will solve
such a minimization problem by making a series of calls to
a decision procedure that, given as input an integerk, deter-
mines whether there exists anx ∈ X with c(x) ≤ k. When
given inputk, the decision procedure runs forτ(k) time
units before returning a (provably correct) “yes” or “no” an-
swer. Thus from our point of view, a minimization problem
is completely specified by the integerOPT and the function
τ .
Definition (instance). An instanceof a minimization prob-
lem is a pair〈OPT, τ〉, whereOPT is the smallest input
for which the decision procedure answers “yes” andτ(k) is
the CPU time required by the decision procedure when it is
run with inputk.

A query is a pair〈k, t〉. To execute this query, one runs
the decision procedure with inputk subject to a time limit
t. Executing queryq = 〈k, t〉 on instanceI = 〈OPT, τ〉
requires CPU timemin {t, τ(k)} and elicits the response

response(I, q) =

{
yes if t ≥ τ(k) andk ≥ OPT
no if t ≥ τ(k) andk < OPT
timeout if t < τ(k) .

Definition (query strategy). A query strategyS is a func-
tion that takes as input the sequence〈r1, r2, . . . , ri〉 of re-
sponses to the firsti queries, and returns as output a new
query〈k, t〉.

When executing queries according to some query strategy,
we maintain upper and lower bounds onOPT . Initially l =
1 andu = ∞. If query 〈k, t〉 elicits a “no” response we set
l ← k + 1; and if it elicits a “yes” reponse we setu ← k.
We usel(S, I, T) andu(S, I, T), respectively, to denote the
lower (resp. upper) bound obtained by spending a total of
T time steps executing queries on instanceI according to
strategyS.

Performance of query strategies
In the single-instance setting, we will evaluate a query strat-
egy according to the following competitive ratio.
Definition (α competitive ratio). Theα competitive ratio
of a query strategyS on instanceI is defined by

ratio(S, I, α) =
TS

T ∗

where

TS = min
{

T ≥ 0 :
u(S, I, T)
l(S, I, T)

≤ α

}

is the time the query strategy requires to obtain a solution
whose cost is (provably) at mostαOPT and

T ∗ = min
{

τ(k1) + τ(k2) :
k2

α
≤ k1 + 1 ≤ OPT ≤ k2

}
is the minimum time required by a pair of queries that pro-
vides a solution whose cost is (provably) at mostαOPT .

Behavior of τ

The performance of our query strategies will depend on the
behavior of the functionτ . For most decision procedures
used in practice, we expectτ(k) to be an increasing function
for k ≤ OPT and a decreasing function fork ≥ OPT (e.g.,
see the behavior ofsiege illustrated in Figure 1), and our
query strategies are designed to take advantage of this be-
havior. More specifically, our query strategies are designed
to work well whenτ is close to itshull.

Definition (hull). Thehull of τ is the function

hullτ (k) = min
{

max
k0≤k

τ(k0), max
k1≥k

τ(k1)
}

.

Figure 2 gives an example of a functionτ (gray bars) and
its hull (dots). Note that the region under the curvehullτ (k)
is not (in general) the convex hull of the points(k, τ(k)).
Also note that the functionsτ andhullτ are identical ifτ is
monotonically increasing (or monotonically decreasing), or
if there exists anx such thatτ is monotonically increasing
for k ≤ x and monotonically decreasing fork > x.

0

2

4

6

8

10

1 2 3 4 5 6 7 8

k

!(
k
)

Figure 2: A functionτ (gray bars) and its hull (dots).

We measure the discrepancy betweenτ and its hull in
terms of thestretchof an instance.

Definition (stretch). The stretch of an instanceI =
〈OPT, τ〉 is defined by

stretch(I) = max
k

hullτ (k)
τ(k)

The instance depicted in Figure 2 has a stretch of 2 be-
causeτ(2) = 1 while hullτ (2) = 2.

The Single-Instance Setting
We first consider the case in which we wish to design a query
strategy for use in solving a single instanceI = 〈OPT, τ〉
(whereOPT andτ are of course unknown to us). Our goal
is to devise a query strategy that minimizes the value of
ratio(S, I, α) for the worst case instanceI, for some fixed
α ≥ 1. Although one might expect our query strategies to
takeα as a parameter, we will find it more natural to design a
query strategy that works wellsimultaneouslyfor all α. We
assumeOPT ∈ {1, 2, . . . , U} for some known upper bound
U . For simplicity, we also assumeτ(k) ≥ 1 for all k.

Arbitrary instances
In the case where the functionτ is arbitrary, the following
simple query strategyS1 achieves anα competitive ratio that
is optimal (to within constant factors).S1 and its analysis are
similar to those of Algorithm A of Rintanen (2004). We do
not advocate the use ofS1. Rather, its analysis indicates the
limits imposed by making no assumptions aboutτ .

Query strategyS1:
1. InitializeT ← 1, l← 1, andu← U .
2. While l < u:

(a) For eachk ∈ {l, l + 1, . . . , u − 1}, execute the
query〈k, T 〉, and updatel andu appropriately
(if the response is “yes” then setu ← k, and if
the response is “no” then setl← k + 1).

(b) SetT ← 2T .

The analysis ofS1 is straightforward. Consider some
fixed k, and letTk = 2dlog2 τ(k)e be the smallest power of
two that is≥ τ(k). After we runS1 for time U + 2U +
4U + . . . + TkU ≤ 2TkU ≤ 4τ(k)U , we will either have
l > k or u ≤ k. Because this holds for allk, it follows that
ratio(S1, I, α) ≤ 4U .

To obtain a matching lower bound, suppose thatτ(k) = 1
if k = OPT − 1 or k = OPT , andτ(k) = ∞ otherwise.
For any query strategyS, there is some choice ofOPT that
forcesS to consume time at leastU

2 before executing a suc-
cessful query, which impliesratio(S, I, α) ≥ U

4 . These ob-
servations are summarized in the following theorem.

Theorem 1. For any instanceI and any α ≥ 1,
ratio(S1, I, α) = O(U). Furthermore, for any strat-
egy S and α ≥ 1, there exists an instanceI such that
ratio(S, I, α) = Ω(U).

Instances with low stretch
In practice we do not expectτ to be as pathological as the
function used to prove the lower bound in Theorem 1. In-
deed, as already mentioned, in practice we expect instances
to have low stretch, whereas the instance used to prove the
lower bound has infinite stretch. We now describe a query
strategyS2 whose competitive ratio isO(stretch(I)·log U),
a dramatic improvement over Theorem 1 for instances with
low stretch.

Like S1, strategyS2 maintains an interval[l, u] that is
guaranteed to containOPT , and maintains a valueT that is
periodically doubled.S2 also maintains a “timeout interval”

[tl, tu] with the property that the queries〈tl, T 〉 and〈tu, T 〉
have both been executed and returned a timeout response.

Each query executed byS2 is of the form〈k, T 〉, where
k ∈ [l, u − 1] but k /∈ [tl, tu]. We say that such ak value
is eligible. The queries are selected in such a way that the
number of eligiblek values decreases exponentially. Once
there are no eligiblek values,T is doubled and[tl, tu] is
reset to the empty interval (so eachk ∈ [l, u − 1] becomes
eligible again).

Query strategyS2:
1. Initialize T ← 2, l ← 1, u ← U , tl ← ∞, and

tu ← −∞.
2. While l < u:

(a) If [l, u − 1] ⊆ [tl, tu] then setT ← 2T , set
tl ←∞, and settu ← −∞.

(b) Letu′ = u− 1. Define

k =

⌊
l+u′

2

⌋
if [l, u′] and[tl, tu] are

disjoint ortl =∞⌊
l+tl−1

2

⌋
if [l, u′] and[tl, tu] intersect
andtl − l > u′ − tu⌊

tu+1+u′

2

⌋
otherwise.

(c) Execute the query〈k, T 〉. If the result is “yes”
set u ← k; if the result is “no” setl ←
k + 1; and if the result is “timeout” settl ←
min{tl, k} and settu ← max{tu, k}.

To analyzeS2, we first bound the number of queries that
can be executed in between updates toT . As already men-
tioned, thek value defined in step 2(b) belongs to the interval
[l, u − 1] but not to the interval[tl, tu]. By examining each
case, we find that the number ofk values that have this prop-
erty goes down by a factor of at least1

4 every query, except
for the very first query that causes a timeout. It follows that
the number of queries in between updates toT is O(log U).

To complete the analysis, first note that whenevertl 6=∞
andtu 6= −∞, it holds thatτ(tl) > T andτ(tu) > T . For
any k ∈ [tl, tu], this implieshullτ (k) > T (by definition
of hull) and thusτ(k) > T

stretch(I) (by definition of stretch).
Now consider some arbitraryk. OnceT ≥ stretch(I) ·τ(k)
it cannot be thatk ∈ [tl, tu], so we must havek /∈ [l, u− 1]
beforeT can be doubled again. Because there can be at
mostO(log U) queries in between updates toT , it follows
that we have to waitO(stretch(I) ·τ(k) · log U) time before
k /∈ [l, u − 1]. Because this holds for allk, it follows that
ratio(S1, I, α) = O(stretch(I) · log U).

We now use a simple information-theoretic argument to
prove a matching lower bound. Fix some query strategyS.
Let τ(k) = 1 for all k (clearly, stretch(I) = 1). Assume
without loss of generality thatS only executes queries of
the form 〈k, 1〉. For eachOPT ∈ {1, 2, . . . , U}, S must
elicit a unique sequence of “yes” or “no” answers, one of
which must have length≥ blog2 Uc. Thus for some choice
of OPT , ratio(S, I, 1) ≥ blog2 Uc

2 = Ω(stretch(I) · log U).
Thus we have proved the following theorem.

Theorem 2. For any function τ and any α ≥ 1,
ratio(S2, τ, α) = O(stretch(I) · log U). Furthermore, for
any strategyS and α ≥ 1, there exists an instanceI such
that ratio(S, I, α) = Ω(stretch(I) · log U).

GeneralizingS2

Although the performance of query strategyS2 (as summa-
rized in Theorem 2) is optimal to within constant factors, in
practice one might want to adjust the behavior ofS2 so as to
obtain better performance on a particular set of optimization
problems. Toward this end, we generalizeS2 by introducing
three parameters:β controls the value ofk; γ controls the
rate at which the time limitT is increased; andρ controls
the balance between the time the strategy spends working
to improve its lower bound versus the time it spends work-
ing to improve the upper bound. Each parameter takes on
a value between 0 and 1. The parameters were chosen so
as to include several natural query strategies in the param-
eter space. The original strategyS2 is recovered by setting
β = γ = ρ = 1

2 . Whenβ = γ = 0 andρ = 0, S3 is equiv-
alent to the ramp-up query strategy (in which theith query
is 〈i,∞〉). Whenβ = γ = 0 andρ = 1, S3 is equivalent
to the ramp-down query strategy (in which theith query is
〈U − i,∞〉).

The analysis ofS3 follows along exactly the same lines as
that ofS2. Retracing the argument leading up to Theorem 2
and working out the appropriate constant factors yields the
following theorem, which shows that the classS3(β, γ, ρ)
includes a wide variety of query strategies with performance
guarantees similar to that ofS2 (note that the theorem pro-
vides no guarantees whenβ = 0 or γ = 0, as in the ramp-up
and ramp-down strategies).

Theorem 3. Let S = S3(β, γ, ρ), where0 < β ≤ 1
2 , 0 <

γ < 1, and0 < ρ < 1. Then for any instanceI and any
α ≥ 1, ratio(S, I, α) = O(1

βγ · stretch(I) · log U).

Query strategyS3(β, γ, ρ):
1. Initialize T ← 1

γ , l ← 1, u ← U , tl ← ∞, and
tu ← −∞.

2. While l < u:
(a) If [l, u−1] ⊆ [tl, tu] then setT ← T

γ , settl ←∞,
and settu ← −∞.

(b) Let u′ = u − 1. If [l, u′] and[tl, tu] are disjoint
(or tl =∞) then define

k =
{
b(1− β)l + βu′c if (1− ρ)l > ρ(U − u′)
bβl + (1− β)u′c otherwise;

else define

k =

{ b(1− β)l + β(tl − 1)c if (1− ρ)(tl − l)
> ρ(u′ − tu)

b(1− β)u′ + β(tu + 1)c otherwise.

(c) Execute the query〈k, T 〉. If the result is “yes” set
u ← k; if the result is “no” setl ← k + 1; and
if the result is “timeout” settl ← min{tl, k} and
settu ← max{tu, k}.

The Multiple-Instance Setting
We now consider the case in which the same decision pro-
cedure is used to solve a sequence〈x1, x2, . . . , xn〉 of in-
stances of some optimization problem. In this case, it is
natural to attempt to learn something about the instance se-
quence and select query strategies accordingly.

Let S be some set of query strategies, and for anyS ∈ S,
let ci(S) denote the CPU time required to obtain an accept-
able solution to instancexi = 〈OPTi, τi〉 using query strat-
egy S (e.g., ci(S) could be the time required to obtain a
solution whose cost is provably at mostα times optimal).
We consider the problem of selecting query strategies in two
settings: offline and online.

Computing an optimal query strategy offline

In the offline setting we are given as input the values ofτi(k)
for all i andk, and wish to compute the query strategy

S∗ = arg min
S∈S

n∑
i=1

ci(S) .

This offline optimization problem arises in practice when
the instances〈x1, x2, . . . , xn〉 have been collected for use
as training data, and we wish to compute the strategyS∗

that performs optimally on the training data.
Unfortunately, ifS contains all possible query strategies

then computingS∗ is NP-hard. To see this, suppose that our
goal is to obtain an approximation ratioα = U−1. To obtain
this ratio, we simply need to execute a single query that re-
turns a non-timeout response. Consider the special case that
τi(k) ∈ {1,∞} for all i andk, and without loss of gener-
ality consider only query strategies that issue queries of the
form 〈k, 1〉. For our purposes, such a query strategy is just
a permutation of thek values in the set{1, 2, . . . , U}. For
eachk, letAk = {xi : τi(k) = 1}. To find an optimal query
strategy, we must order the setsA1, A2, . . . , AU from left to
right so as to minimize the sum, over all instancesxi, of the
position of the leftmost set that containsxi. This is exactly
min-sum set cover. For anyε > 0, obtaining a4− ε approx-
imation to min-sum set cover is NP-hard (Feige, Lovász, &
Tetali 2004). Thus we have the following theorem.

Theorem 4. For anyε > 0, obtaining a4−ε approximation
to the optimal query strategy is NP-hard.

Certain special cases of the offline problem are tractable.
For example, suppose all queries take the same time, say
τi(k) = t for all i andk. In this case we need only consider
queries of the form〈k, t〉, and any such query elicits a non-
timeout response. A query strategy can then be specified as
a binary search tree over the key set{1, 2, . . . , U}. The opti-
mal query strategy is simply the optimum binary search tree
for the access sequence〈OPT1, OPT2, . . . , OPTn〉, which
can be computed inO(U2) time using dynamic program-
ming (Knuth 1971). Similarly, if we consider arbitraryτi but
restrict ourselves to queries of the form〈k,∞〉 (so that again
all queries succeed), dynamic programming can be used to
compute an optimal query strategy. Finally, the offline prob-
lem is tractable ifS is small enough for us to search through

it by brute force. Based on the results of the previous sec-
tion, a natural choice would be forS to includeS3(β, γ, ρ)
for various values of the three parameters.

Selecting query strategies online
We now consider the problem of selecting query strategies
in an online setting, assuming that|S| is small enough that
we would not mind usingO(|S|) time or space for decision-
making. In the online setting we are fed, one at a time,
a sequence〈x1, x2, . . . , xn〉 of problem instances to solve.
Prior to receiving instancexi, we must select a query strat-
egySi ∈ S. We then useSi to solvexi and incur costci(Si).
Our regretat the end ofn rounds is equal to

1
n
·

(
E

[
n∑

i=1

ci(Si)

]
−min

S∈S

n∑
i=1

ci(S)

)
(1)

where the expectation is over any random bits used by our
strategy-selection algorithm. An algorithm’s worst-case re-
gret is the maximum value of (1) over all instance sequences
of lengthn. A no-regret algorithmhas worst-case regret that
is o(1) as a function ofn.

We now describe how two existing algorithms can be
applied to the problem of selecting query strategies. Let
M be an upper bound onci(S), and letT be an upper
bound onτi(k). Viewing our online problem as an instance
of the “nonstochastic multiarmed bandit problem” and us-
ing theExp3 algorithm of Auer et al. (2002) yields regret

O
(
M
√

1
n |S|

)
= o(1). The second algorithm makes use

of the fact that on any particular instancexi, we can ob-
tain enough information to determine the value ofci(S)
for all S ∈ S by executing the query〈k, T 〉 for eachk ∈
{1, 2, . . . , U}. This requires CPU time at mostTU . We can
then use the “label-efficient forecaster” of Cesa-Bianchi et
al. (2005) to select query strategies. Theorem 1 of that paper

shows that the regret is at mostM
(
ln |S|

η + n η
2ε

)
+ εnTU ,

whereη andε are parameters. Optimizingη andε yields

regretO

(
M
(

TU ln |S|
Mn

) 1
3
)

= o(1). Given n as input,

one can choose whichever of the two algorithms yields the
smaller regret bound.

Experimental Evaluation
In this section we evaluate query strategyS2 experimen-
tally by using it to create modified versions of state-of-the-
art solvers in two domains: STRIPS planning and job shop
scheduling. In both of these domains, we found that the
number of standard benchmark instances was too small for
the online algorithms discussed in the previous section to be
effective. Accordingly, our experimental evaluation focuses
on the techniques developed for the single-instance setting.

Planning
The planners entered in the 2006 International Planning
Competition were divided into two categories:optimalplan-
ners always return a plan of provably minimum makespan,
whereassatisficingplanners simply return a feasible plan

quickly. In this section we pursue a different goal: obtaining
aprovablynear-optimal plan as quickly as possible.

As already mentioned, SatPlan finds a minimum-
makespan plan by making a sequence of calls to a SAT
solver that answers questions of the form “Does there exist
a plan of makespan≤ k?”. The original version of SatPlan
triesk values in an increasing sequence starting fromk = 1,
stopping as soon as it obtains a “yes” answer. We compare
the original version to a modified version that instead uses
query strategyS2. When usingS2 we do not share any work
(e.g., intermediate result files) among queries with the same
k value, although doing so could improve performance.

We ran each of these two versions of SatPlan on bench-
mark instances from the 2006 International Planning Com-
petition, with a one hour time limit per instance, and
recorded the upper and lower bounds we obtained. To ob-
tain an initial upper bound, we ran the satisficing planner
SGPlan (Hsuet al. 2006) with a one minute time limit. We
choseSGPlan because it won first prize in thesatisficing
planningtrack of last year’s competition. IfSGPlan found
a feasible plan within the one minute time limit, we used
the number of actions in that plan as an upper bound on the
optimum makespan; otherwise we artificially set the upper
bound to 100.

Table 1 presents our results for 30 instances from the
pathways domain. Numbers in bold indicate an upper or
lower bound obtained by one query strategy that was strictly
better than the bound obtained by any other query strategy.
Not surprisingly,S2 always obtains upper bounds that are
as good or better than those obtained by the ramp-up strat-
egy. Interestingly, the lower bounds obtained byS2 are only
slightly worse, differing by at most two parallel steps from
the lower bound obtained by the ramp-up strategy. Exam-
ining the ratio of the upper and lower bounds obtained by
S2, we see that for 26 out of the 30 instances it finds a plan
whose makespan is (provably) at most 1.5 times optimal,
and for all but one instance it obtains a plan whose makespan
is at most two times optimal. In contrast, the ramp-up strat-
egy does not find a feasible plan for 21 of the 30 instances.
Thus on thepathways domain, the modified version of
SatPlan using query strategyS2 gives behavior that is in
many ways better than that of the original.

To better understand the performance ofS2, we also com-
pared it to a geometric query strategySg inspired by Algo-
rithm B of Rintanen (2004). This query strategy behaves as
follows. It initializesT to 1. If l andu are the initial lower
and upper bounds, it then executes the queries〈k, Tγk−l〉
for eachk = {l, l + 1, . . . , u − 1}, whereγ ∈ (0, 1) is a
parameter. It then updatesl andu, doublesT , and repeats.
Based on the results of Rintanen (2004) we setγ = 0.8. We
do not compare to Rintanen’s Algorithm B directly because
it requires many runs of the SAT solver to be performed
in parallel, which requires an impractically large amount of
memory for some benchmark instances.

The results forSg are shown in the second column of Ta-
ble 1. LikeS2, Sg always obtains upper bounds that are as
good or better than those of the ramp-up strategy. Compared
to S2, Sg generally obtains slightly better lower bounds and
slightly worse upper bounds.

Table 1: Performance of two query strategies on benchmark
instances from thepathways domain of the 2006 Inter-
national Planning Competition. Bold numbers indicate the
(strictly) best upper/lower bound we obtained.

Inst. SatPlan (S2) SatPlan (Sg) SatPlan (orig.)
[lower,upper] [lower,upper] [lower,upper]

p01 [5,5] [5,5] [5,5]
p02 [7,7] [7,7] [7,7]
p03 [8,8] [8,8] [8,8]
p04 [8,8] [8,8] [8,8]
p05 [9,9] [9,9] [9,9]
p06 [12,12] [12,12] [12,12]
p07 [13,13] [13,13] [13,13]
p08 [15,17] [16,17] [16,∞]
p09 [15,17] [15,17] [15,∞]
p10 [15,15] [15,15] [15,15]
p11 [16,17] [16,17] [16,∞]
p12 [16,19] [17,19] [17,∞]
p13 [16,18] [17,18] [17,∞]
p14 [14,20] [15,19] [15,∞]
p15 [18,18] [18,18] [18,18]
p16 [17,21] [19,22] [19,∞]
p17 [19,21] [20,22] [20,∞]
p18 [19,22] [19,23] [19,∞]
p19 [17,22] [18,24] [18,∞]
p20 [17,28] [18,27] [19,∞]
p21 [20,25] [21,25] [22,∞]
p22 [17,23] [18,26] [19,∞]
p23 [17,25] [17,25] [18,∞]
p24 [21,27] [21,28] [22,∞]
p25 [20,27] [20,∞] [21,∞]
p26 [19,27] [20,31] [21,∞]
p27 [19,34] [20,31] [20,∞]
p28 [19,27] [20,∞] [21,∞]
p29 [19,29] [18,29] [18,∞]
p30 [20,60] [21,∞] [21,∞]

Similar tables for the remaining six problem do-
mains are available online athttp://www.cs.cmu.
edu/˜matts/icaps07/appendixA.pdf . For the
storage , rovers , andtrucks domains, our results are
similar to the ones presented in Table 1:S2 achieved sig-
nificantly better upper bounds than ramp-up and slightly
worse lower bounds, whileSg achieved slightly better lower
bounds thanS2 and slightly worse upper bounds. For the
openstacks , TPP, andpipesworld domains, our re-
sults were qualitatively different: most instances in these do-
mains were either easy enough that all three query strategies
found a provably optimal plan, or so difficult that no strategy
found a feasible plan, with the ramp-up strategy yielding the
best lower bounds.

To gain more insight into these results, we plotted the
function τ(k) for various instances. Broadly speaking, we
encountered two types of behavior: eitherτ(k) increased
as a function ofk for k < OPT but decreased as a func-
tion of k for k ≥ OPT , or τ(k) increased as a func-

tion of k for all k. Figure 3 (A) and (B) give prototyp-
ical examples of these two behaviors. The gross behav-
ior of τ on a particular instance was largely determined by
the problem domain. For instances from thepathways ,
storage , trucks , and rovers domainsτ tended to
be increasing-then-decreasing, while for instances from the
TPP andpipesworld domainτ tended to be monoton-
ically increasing, explaining the qualitative difference be-
tween our results in these two sets of domains. For most
instances in theopenstacks domain we found nok val-
ues that elicited a “yes” answer in reasonable time; hence
we cannot characterize the typical behavior ofτ .

(A) trucks/p7.pddl

0

300

600

1 6 11 16 21

Makespan bound (k)

C
P
U

 t
im

e
 (

s
e
c
o
n

d
s
) no

yes

(B) pipesworld/p21.pddl

0

150

300

1 6 11 16 21

Makespan bound (k)

C
P
U

 t
im

e
 (

s
e
c
o
n

d
s
) no

yes

Figure 3: Behavior of the SAT solversiege running on
formulae generated by SatPlan to solve (A) instancep7
from the trucks domain and (B) instancep21 from the
pipesworld domain of the 2006 International Planning
Competition.

Job shop scheduling

In this section, we use query strategyS2 to create a modi-
fied version of a branch and bound algorithm for job shop
scheduling. We chose the algorithm of Brucker et al. (1994)
(henceforth referred to asBrucker) because it is one of the
state-of-the-art branch and bound algorithms for job shop
scheduling, and because code for it is freely available on-
line.

Given a branch and bound algorithm, one can always cre-
ate a decision procedure that answers the question “Does

there exist a solution with cost at mostk?” as follows: ini-
tialize the global upper bound tok+1, and run the algorithm
until either a solution with cost≤ k is discovered (in which
case the result of the query is “yes”) or the algorithm ter-
minates without finding such a solution (in which case the
result is “no”). Note that the decision procedure returns the
correct answer independent of whetherk+1 is a valid upper
bound. A query strategy can be used in conjunction with this
decision procedure to find optimal or approximately optimal
solutions to the original minimization problem.

We evaluate two versions ofBrucker : the original and
a modified version that usesS2. We ran both versions on the
instances in the OR library (Beasley 1990) with a one hour
time limit per instance, and recorded the upper and lower
bounds obtained. We do not evaluate the ramp-up strategy
orSg in this context, because they were not intended to work
well on problems such as job shop scheduling, where the
number of possiblek values is very large.

On 50 of the benchmark instances, both query strategies
found a (provably) optimal solution within the time limit.
Table 2 presents the results for the remaining instances. As
in Table 1, bold numbers indicate an upper or lower bound
that was strictly better than the one obtained by the com-
peting algorithm. With the exception of just one instance
(la25), the modified algorithm using query strategyS2 ob-
tains better lower bounds than the original branch and bound
algorithm. This is not surprising, because the lower bound
obtained by running the original branch and bound algo-
rithm is simply the value obtained by solving the relaxed
subproblem at the root node of the search tree, and is not
updated as the search progresses. What is more surprising
is that the upper bounds obtained byS2 are also, in the ma-
jority of cases, substantially better than those obtained by
the original algorithm. This indicates that the speculative
upper bounds created byS2’s queries are effective in prun-
ing away irrelevant regions of the search space and forc-
ing the branch and bound algorithm to find low-cost sched-
ules more quickly. These results are especially promising
given that the technique used to obtain them is domain-
independent and could be applied to other branch and bound
algorithms. In related work, Streeter & Smith (2006) im-
proved the performance ofBrucker by using an iterated
local search algorithm for job shop scheduling to obtain
valid upper bounds and also to refine the branch ordering
heuristic.

To better understand these results, we manually examined
the functionτ(k) for a number instances from the OR li-
brary. In all cases, we found thatτ(k) increased smoothly
up to a point and then rapidly decreased in a jagged fashion.
Figure 4 illustrates this behavior. The smooth increase of
τ(k) as a function ofk for k < OPT reflects the fact that
proving that no schedule of makespan≤ k exists becomes
more difficult ask gets closer toOPT . The jaggedness of
τ(k) for k ≥ OPT can be seen as an interaction between
two factors: fork ≥ OPT , increasingk leads to less prun-
ing (increasingτ(k)) but also to a weaker termination crite-
rion (reducing it). In spite of this, the curve has low stretch
overall, and thus its shape can be exploited by query strate-
gies such asS2.

Table 2: Performance of two query strategies on benchmark
instances from the OR library. Bold numbers indicate the
(strictly) best upper/lower bound we obtained.

Instance Brucker (S2) Brucker (original)
[lower,upper] [lower,upper]

abz7 [650,712] [650,726]
abz8 [622,725] [597,767]
abz9 [644,728] [616,820]
ft20 [1165,1165] [1164,1179]
la21 [1038,1070] [995,1057]
la25 [971,979] [977,977]
la26 [1218,1227] [1218,1218]
la27 [1235,1270] [1235,1270]
la28 [1216,1221] [1216,1273]
la29 [1118,1228] [1114,1202]
la38 [1176,1232] [1077,1228]
la40 [1211,1243] [1170,1226]
swv01 [1391,1531] [1366,1588]
swv02 [1475,1479] [1475,1719]
swv03 [1373,1629] [1328,1617]
swv04 [1410,1632] [1393,1734]
swv05 [1414,1554] [1411,1733]
swv06 [1572,1943] [1513,2043]
swv07 [1432,1877] [1394,1932]
swv08 [1614,2120] [1586,2307]
swv09 [1594,1899] [1594,2013]
swv10 [1603,2096] [1560,2104]
swv11 [2983,3407] [2983,3731]
swv12 [2971,3455] [2955,3565]
swv13 [3104,3503] [3104,3893]
swv14 [2968,3350] [2968,3487]
swv15 [2885,3279] [2885,3583]
yn1 [813,987] [763,992]
yn2 [835,1004] [795,1037]
yn3 [812,982] [793,1013]
yn4 [899,1158] [871,1178]

Conclusions
Optimization problems are often solved using an algorithm
for the corresponding decision problem as a subroutine. In
this paper, we considered the problem of choosing which
queries to submit to the decision procedure so as to obtain
an (approximately) optimal solution as quickly as possible.
Our main contribution was a new query strategyS2 that has
attractive theoretical guarantees and appears to perform well
in practice. Experimentally, we showed thatS2 can be used
to create improved versions of state-of-the-art algorithms for
planning and job shop scheduling. An interesting direction
for future work would be to applyS2 in other domains where
branch and bound algorithms work well, for example integer
programming or resource-constrained project scheduling.

References
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire,
R. E. 2002. The nonstochastic multiarmed bandit prob-
lem. SIAM Journal on Computing32(1):48–77.

0

1

2

3

4

5

900 920 940 960

Makespan bound (k)

C
P
U

 t
im

e
 (

s
e
c
o
n

d
s
) no

yes

Figure 4: Behavior ofBrucker running on OR library in-
stanceft10 .

Beasley, J. E. 1990. OR-library: Distributing test problems
by electronic mail. Journal of the Operational Research
Society41(11):1069–1072.
Blum, A. L., and Furst, M. L. 1997. Fast planning through
planning graph analysis.Artificial Intelligence 90:281–
300.
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics49(1-3):107–127.
Cesa-Bianchi, N.; Lugosi, G.; and Stoltz, G. 2005. Mini-
mizing regret with label efficient prediction.IEEE Trans-
actions on Information Theory51:2152–2162.
Feige, U.; Lov́asz, L.; and Tetali, P. 2004. Approximating
min sum set cover.Algorithmica40(4):219–234.
Hsu, C.-W.; Wah, B. W.; Huang, R.; and Chen, Y. 2006.
New features in SGPlan for handling preferences and con-
straints in PDDL3.0. InProceedings of the Fifth Interna-
tional Planning Competition, 39–42.
Kautz, H.; Selman, B.; and Hoffmann, J. 2006. SATPLAN:
Planning as satisfiability. InProceedings of the Fifth Inter-
national Planning Competition.
Knuth, D. E. 1971. Optimum binary search trees.Acta
Informatica1:14–25.
Korf, R. E. 1985. Depth-first iterative deepening: An
optimal admissible tree search.Artificial Intelligence
27(1):97–109.
Rintanen, J. 2004. Evaluation strategies for planning as sat-
isfiability. In Proceedings of the Sixteenth European Con-
ference on Artificial Intelligence, 682–687.
Streeter, M. J., and Smith, S. F. 2006. Exploiting the power
of local search in a branch and bound algorithm for job
shop scheduling. InProceedings of the Sixteenth Interna-
tional Conference on Automated Planning and Scheduling,
324–332.
Xing, Z.; Chen, Y.; and Zhang, W. 2006. MaxPlan: Op-
timal planning by decomposed satisfiability and backward
reduction. InProceedings of the Fifth International Plan-
ning Competition, 53–56.

