Exploiting the Power of Local Search in a Branch and Bound
Algorithm for Job Shop Scheduling

Matthew J. Streeter' and Stephen F. Smiti
Computer Science Department
and Center for the Neural Basis of Cogniticemd
The Robotics Institute
Carnegie Mellon University
Pittsburgh, PA 15213
{matts, sf$@cs.cmu.edu

Abstract nodes in the branch and bound search tree.

This paper presents three techniques for using an iter- 2. Branch ordering. In practice, a near-optimal solution to
ated local search algorithm to improve the performance an optimization problem will often have many attributes

of a state-of-the-art branch and bound algorithm for job
shop scheduling. We use iterated local search to obtain
(i) sharpened upper boundsi) (@n improved branch-
ordering heuristic, andii{) and improved variable-
selection heuristic. On randomly-generated instances,
our hybrid of iterated local search and branch and bound
outperforms either algorithm in isolation by more than
an order of magnitude, where performance is measured
by the median amount of time required to find a globally
optimal schedule. We also demonstrate performance

(i.e., assignments of values to variables) in common with
an optimal solution. In this case, the heuristic ordering
of branches can be improved by giving preference to a
branch that is consistent with the near-optimal solution.

. Variable selection. The heuristic solutions used for vari-

able selection at each node of the search tree can be im-
proved by local search.

We demonstrate the power of these techniques on the job

gains on benchmark instances from the OR library. shop scheduling problem, by hybridizing the/ AR iter-
ated local search algorithm of Watson el al. (2003a) with

1. Introduction the branch and bound algorithm of Brucker et al. (1994).

Ilterated local search and chronological backtracking have 1 1 contributions
complementary strengths and weaknesses. The strength of } o)
backtracking is its systematicity: it is guaranteed to find a The primary contributions of this work are as follows.

global optimum in a bounded amount of time. Its weakness o e quantitatively compare the performance of iterated
is the fact that it performs a depth-first search: once it vis- |5cal search and branch and bound on random JSP in-
its a region of the search space, it must explore that region stances. The results of this comparison nicely illustrate
exhaugnvely before moving onward, potentially wasting a the complementary strengths of these two classes of al-
lot of time. Iterated local search moves more freely about gorithms: the branch and bound algorithm is orders of
the search space and often finds a near-optimal solution rel- magnitude more efficient at finding a globally optimal
atively quickly in practice. The downside is that the amount schedule, while iterated local search is orders of magni-

gf timde g searches before finding a global optimum is un- ,de more efficient at finding a near-optimal schedule.
ounded.

Previous work has addressed the weaknesses of chrono-* We show experimentally that for random square JSP in-
logical backtracking in a number of ways: through random- Stances, the near-optimal schedules that are found quickly
ization and restart (Gomes 2003), tree search strategies such DY iterated local search are typically only a short distance
as limited discrepancy search (Harvey & Ginsberg 1995) away from the nearest globally optimal schedule. This
and depth-bounded discrepancy search (Walsh 1997), intel- Suggests using the resullts of iterated local search to guide
ligent backtracking techniques such as dynamic and partial- the branch ordering decisions made by branch and bound,
order dynamic backtracking (Ginsberg 1993; Ginsberg & and we show that such an approach does in fact lead to a
McAllester 1994), and other methods. There have also been ~More accurate branch ordering heuristic.

a number of attempts to exploit the power of local search o Motivated by these observations, we show how to use it-

within chronological backtracking (Zhang & Zhang 1996;
Kamarainen & Sakkout 2002; Nareyek, Smith, & Ohler
2003). The latter techniques are discussed more fuligin

In this paper we explore three simple ways of exploiting
the power of iterated local search within branch and bound:

1. Upper bounds. Near-optimal solutions provide sharp-

ened upper bounds that can be used to prune additional

erated local search to improve the upper bounds, branch
ordering heuristic, and variable selection heuristic used
in branch and bound. On random instances, we find that
each of these techniques improves performance by a fac-
tor that increases with problem size, where performance
is measured by the median time required to find a globally
optimal schedule.

2. Background
2.1. The Job Shop Scheduling Problem

We consider the widely studied makespan-minimization ver-
sion of the job shop scheduling probleth||(C,,...), which
we refer to simply as the JSP.

An N by M instance of the JSP is a set®fjobs, each of
which is a sequence dff operations. Each operation must
be performed on a designated machine for a specified dura-
tion, without interruption. There ark/ machines, and each

job uses each machine exactly once. A schedule assigns star

times to each operation such that

1. no machine is scheduled to process more than one opera-

tion at the same time, and
2. the ordering of operations within each job is respected.

The makesparof a schedule is equal to the maximum com-

pletion time (i.e., start time plus duration) of any operation.

We consider the makespan-minimization version of the job
shop scheduling problem, in which the objective is to find a
schedule that minimizes the makespan.

It is convenient to represent a schedule bydigunctive
graph(Roy & Sussmann 1964). In a disjunctive graph, there
is a vertex corresponding to each operation in the problem
instance, as well as two special vertices called gberce
and thesink There are directed edges pointing from the
source into (the vertex corresponding to) the first operation
of each job, from the last operation of each job into the sink,
and from each operation into the next operation (if any) in
the job. A directed edge from operation to operationo,
indicates thab, completes befor®, starts. The orienta-
tion of all the directed edges just discussed is dictated by the
problem instance, and these directed edges are cztlied
junctive arcs The remaining edges connect fixed pairs of
operations, but their orientation is defined by a particular
schedule. Thesdisjunctive edgesonnect all pairs of oper-
ations performed on the same machine. A disjunctive edge
with an assigned direction is calleddssjunctive arc The
weight of each arc is given by the duration of the operation
that the edge points out of (or zero if the edge points out
of the source). Acritical path is a longest (weighted) path
from source to sink in the (directed) disjunctive graph that
represents some particular schedule. It can be shown that
the makespan of the schedule is equal to the length of its
critical path.

Figure 1 illustrates (A) a JSP instance, (B) a schedule for
that instance, and (C) the corresponding disjunctive graph.

2.1.1. Distance Between SchedulesGiven two schedules

s ands’, we define the distandgs — s'|| between them as
the proportion of disjunctive edges that point in opposite di-
rections in the two schedules (Mattfeld, Bierwirth, & Kopfer
1999).

2.2. Algorithms for Job Shop Scheduling

We focus our efforts on a single iterated local search algo-
rithm (/-JAR) and a single branch and bound algorithm
(Brucker). We chosd-JAR because of its simplicity and

its demonstrated performance on benchmark instances of the

(A) JSP instance (B) JSP schedule
»EHEH A Y B 2 DY
7o HEHEHEE] (o

time

(C) Disjunctive graph

LN

Figure 1: (A) A 2x4 instance of the JSP with jobs
Jt and J2. Job J! consists of the sequence of oper-
ations (J1, J3,J1, J}), and J, consists of the sequence
(J2,J2,J2,J2). Each operation is represented by a rect-
angle whose texture represents the machine on which the
operation is performed and whose width is proportional to
the operation’s duration. (B) A JSP schedule assigns a start
time to each operation. (C) A disjunctive graph represents
start times indirectly by defining precedence relations be-
tween each pair of operations performed on the same ma-
chine. Here” is source and* is the sink.

JSP. We chos8rucker because of its performance and be-
cause code for it is freely available online.

2.2.1. I-JAR. Watson et al. (2003a) present a simple it-
erated local search algorithm calléd/ AR whose perfor-
mance is competitive with the tabu search algorithm of Tail-
lard (1994) on benchmark instances from the OR library.
I-JAR performs a series of iterations. In each iteration,
it first descends to a local optimum, then escapes from the
local optimum by making a number of random moves.

Formally, let Vi (s) denote the set of all schedules that
can be obtained froms by reversing the orientation of a
single disjunctive arc that belongs to a critical path (van
Laarhoven, Aarts, & Lenstra 1992)-JAR is defined as
follows.

Procedurd-JAR:

1. Initialize cur < a randomly-generated sched-
ule.

2. Do:
(a) (Descentto local optimumlror each sched-
ule s € Ni(cur), in random order:

i. If makespan(s) < makespan(cur) then
setcur < s and go to 2 (a).
(b) With probabilityﬁ, setl «— 5; otherwise
setl « 2.
(c) (Random walk)For: from 1 tol:

i. Letsbearandom element df; (cur), and
setcur «+ s.

2.2.2. Brucker’s branch and bound algorithm. Brucker

et al. (1994) present a branch and bound algorithm for
job shop scheduling, hereafter referred to Bsucker.

As in other branch and bound algorithms for job shop
scheduling, each search tree nod&irucker represents a
set of disjunctive arcs (the “fixed arcs”) that must be present

For eachN € {6,7,8,9,10,11,12,13} we generate a
set,Zy,n, of randomN by N JSP instances. Fav < 12,
|Zy x| = 1000, while |Z;313] = 150. For each ran-
dom instancd, we usedBrucker to determine its optimal
makespan, denoteght_makespan ().

Our evaluation focuses on square JSP instances (i.e., those

in all descendents of that node. Branches are generated bywith N = M) because they have been found to be the most
constructing a schedule consistent with the fixed arcs and difficult in practice (Fisher & Thompson 1963).

examining (one of) the schedule’s critical path(s). Formally,
if G is a set of disjunctive arcs, the procedieucker(G)

is as follows (ipper_bound is a global variable initialized
to o).

ProcedureBrucker(G):

1. (Constraint propagation).Add to G disjunc-
tive arcs that must be present in any schedule
with makespan< upper_bound.

2. (Pruning). If lower_bound(G)
upper_bound return.

3. (Heuristic scheduling).Using a priority dis-
patching rule, generate a schedulghat is
consistent withG. Set upper_bound <«
min(upper_bound, makespan(s)).

. (Branching).Find a critical pathP, in s. P is
used to define branchés,, G, ..., G, (the
order of the branches is determined heuristi-
cally using data obtained during the computa-
tion of lower bounds). Foi from 1 ton:

(a) CallBrucker(G;).

>

We will refer to steps 1-3 in the above code astaration
of Brucker. The code forBrucker is freely available via
ORSEP (Brucker, Jurisch, & Sievers 1992).

Among systematic search algorithms, the performance of
Brucker is state-of-the-art for smaller benchmark instances
from the OR library and among the best for larger instances
(Brinkkotter & Brucker 2001).

We consider two additional algorithm®,DS andLD.S,
that are identical td3rucker except that they do not use a
depth-first tree search strategy2 DS instead uses depth-
bounded discrepancy search (Walsh 1997), whileS uses
limited discrepancy search (Harvey & Ginsberg 1995). As

3.2. Performance Metric

In quantifying the performance of an algorithiy we fo-
cus on the amount of time required to find an optimal or
near-optimal schedule with a specified minimum probabil-
ity. Specifically, for real numberg € (0,1) andp > 1 and
integersN and M, we determine the minimursuch that,
whenA is run on a randonV by M JSP instance farsec-
onds, with probability at least it finds a schedule whose
makespan is at mogttimes the optimal makespan.

Given a sefly ps of N by M JSP instances with known
optimal makespans, our procedure for determinings
straightforward. We run4 on each instancé € Iy
with a time limit of " = 1 second, terminating the run
immediately if it finds go-optimal schedule (i.e., a schedule
whose makespan is at mgstimes the optimal makespan).
For each instance, we record the amount of time thaan
and whether or not it found a-optimal schedule. If the
proportion of runs that found ag-optimal schedule by time
T is at leastg, we find the smallest < T such that the
proportion of runs that found a-optimal schedule by time
t is at leasyy. Otherwise, we doubl&' and try again. Each
run of 4 on a particular instancé uses the same random
number generator seed, so that our results would be exactly
the same (though it would take longer to compute them) if
we had initialized! to infinity.

All experiments reported in this paper were performed on

a 2.4 GHz Pentium IV with 512 MB of memory.

4. Motivations

In this section we present some experiments that motivate
this work.

4.1. Comparing Local and Exhaustive Search

compared to depth-first search, these two tree search strate-4.1.1. Methodology. For eachN ¢ {6,7,8,9,10, 11},
gies have been found to reduce the number of nodes thateachp < {1,1.05}, and eachd € {I-JAR, Brucker},

must be explored before finding an optimal or near-optimal
solution.

3. Methodology

we used the procedure describeds$2 to determine the
number of iterations required by to find a schedule whose
makespan is within a factgrof optimal with probability at
leastq = 0.9.

This section describes how we evaluate the performance of 4.1.2. Results Figure 2 shows the time (in seconds) re-

algorithms for job shop scheduling.

3.1. Test Instances
To generate a randofs by M JSP instance we let the order

quired byl-JAR and Brucker to find either (A) an opti-
mal schedule or (B) a near-optimal schedule with probability
atleasty = 0.9 when run on arandor¥ by N JSP instance.
The key observations are that

in which the machines are used by each job be arandom per- e the time required by-JAR to find a globally optimal

mutation of{1, 2, ..., M'}, and draw each operation duration
uniformly at random from{1, 2, ..., 100}.

schedule exceeds the time required®wucker by a fac-
tor that increases with problem size, ranging from 5.23

(A) Time to find optimal schedule

_ —%—-JAR
g 100
=
5 ---©-- Brucker
o 104 e
[
Q
£ 1
(=3
e
© 01
Q
£
= 0.01 e
0.001 . :
6 8 9 10 1
N = Num. jobs/machines
(B) Time to find near-optimal schedule
1 9
n —x—-JAR
| -2
c
3 0.1 --@-- Brucker
e
[
Q
F=
s
o
2
001
Q
£
(=
0.001

8 9 10 1
N = Num. jobs/machines

Figure 2: Amount of time 90*" percentile) required by
I-JAR and Brucker find (A) a globally optimal schedule

and (B) a schedule whose makespan is within a factor 1.05 G4, G, . .

of optimal, when run on a randov by N JSP instance.
Error bars are 95% confidence intervals.

(for 6x6 instances) to 14.7 (for 11x11 instances); how-
ever,

e the amount of time required bBrucker to find anear-
optimal schedule exceeds the time required by AR
by a factor that increases with problem size, ranging from
1.03 (for 6x6 instances) to 14.4 (for 11x11 instances).

These results suggest that a short runfef AR of-
ten yields a near-optimal schedule, thus providing an upper
bound that may improve the performanBeucker.

4.2. Mean Distance to Nearest Optimal Schedule

In this section we estimate the mean distance between sched

ules found byl-JAR and the nearest globally optimal

schedule (recall that distance between schedules is measured

by the proportion of disjunctive edges whose orientations
differ).

4.2.1. Methodology For each instancé € Zs 6 UZ7 7 U
Iss, we runI-JAR until it evaluates a globally optimal
schedule. Fop > 1, lets, be the first schedule evaluated
by I-JAR whose makespan is within a facteof optimal.

For eachp € {1,1.01,...,1.25}, we determine the dis-
tance froms,, to the nearest optimal schedule. The distance

Mean distance to nearest optimal schedule
0.25 4
---A-- 6x6 instances
--0--7x7 instances

0.2 { —®—8x8instances

Distance
o
&

=4

0.054 |

Figure 3: Mean distance from a schedule within a faptof
optimal to the nearest optimal schedule. Error bars are 95%
confidence intervals.

is computed using a “radius-limited” version @&frucker
which determines, for a given radiusand center sched-
ule s., whether there exists an optimal schedule in the set
{s : ||s = sc|| < r}. The smallest: for which this set con-
tains an optimal schedule is determined using binary search.

4.2.2. Results Figure 3 presents our results. For ed¢he
{6,7,8}, Figure 3 shows that the mean distance frgymo
the nearest optimal schedule is an increasing functign of
For N = 8, for example, the mean distance for= 1.01 is
0.054, while the mean distance foe= 1.25 is 0.184.

Suppose that a search tree nodé has branches
., Gy, and lets* be a known near-optimal sched-
ule that is consistent witt¥ (i.e., the disjunctive graph of*
contains all the disjunctive arcs in the €&t Based on Fig-
ure 3, itis likely that there exists a globally optimal schedule
s that has many attributes in common with This suggests
thatif a branchG; is consistent witls* it may also be consis-
tent with 5, so if we want to minimize the work that branch
and bound must perform before finding a global optimum it
makes sense to move; to the front of the list of branches.

The results in Figure 3 are not that surprising in light of
previous work. For example, the Markov model of Watson
et al. (2003b) shows that as a tabu search run progresses
the mean distance to the nearest global optimum decreases.
Our results are also consistent with the “big valley” picture
of JSP landscapes, for which there is empirical (Nowicki &
Smutnicki 2001) as well as theoretical evidence (Streeter &
Smith 2005), especially for randofis by M JSP instances

with &L~ 1.

M —

5. Improving Branch and Bound
5.1. Upper Bounds

The data presented igd.1 show that I-JAR finds a near-
optimal schedule (i.e., one whose makespan is within a fac-
tor 1.05 of optimal) more quickly than Brucker’s branch and
bound algorithm. This suggests running the two algorithms
in parallel, each at 50% strength, and using the schedules
discovered byl-JAR to update the upper bound used by

Brucker. We refer to this hybrid algorithm d$B.
Specifically, for an algorithmd € {I-JAR, Brucker},

let T4 (N, M) denote the mean CPU time per iteration that

A requires when run on a randoi by M JSP instance.

Trucker(N,M 1 1
Let Toguin(N, M) = {WMJ UB is defined as
follows.

Procedurd/ B:

1. Do:

(a) Performl.,., (N, M) iterations ofl-JAR.
Let ¢ be the makespan of the best sched-
ule found byI-JAR. Setupper_bound
min(upper_bound, £).

(b) Perform a single iteration dbrucker.

5.2. Branch Ordering

The results o§4.2 show that near-optimal schedules tend to
have many disjunctive arcs in common with globally optimal
schedules. We define a hybrid algoritiiB+BR that is
designed to take advantage of this fact. Lik&, U B+BR
runs Brucker andI-JAR in parallel and uses the sched-
ules found by/-JAR to update upper bounds. Addition-
ally, U B+BR alters the branch ordering heuristic used by
Brucker as follows:

Let (G1,Gs,...,G,) be the branches as ordered by
Brucker. Let s* be the best schedule found so far by
I-JAR. If for somei, G; is consistent withs* (i.e., s*
contains all the disjunctive arcs ;) then moveG; to
the front of the list of branches.

Note that whers* changes, the branch ordering heuristic
changes as well, and we may want to backtrack to revisit
branching decisions that were made earlier in the search. To
facilitate this, we maintain in memory a tr&eof search tree
nodes. Each node iA is initially marked as “unexpanded”,
then after constraint propagation, lower bounding, and
branching have been performed as fgér2.2, the node
is marked as “expanded”. Nodes are deleted from the

backtracks to the root node of the search tree and contin-
ues the search using the new branch ordering (but without
discarding the work that has already been done).

If s* is updatedr times, the memory overhead (as com-
pared to depth-first search) is at most a factonofwWhen
each operation duration is drawn from, 2, ...,100}, n <
100N M, so the memory required by B+BR is at most
100N M times that required bysrucker in the worst case.

In practice, the actual memory requirement is much less.

5.3. Variable Selection

Our third hybrid algorithm,U B+BR+V' S, is identical to
U B+BR except that it uses local search to generate heuris-
tic schedules (step (3) of the pseudo-codeBoticker pre-
sented in§2.2.2), rather than using a priority dispatching
rule.

To generate a heuristic schedule that is consistent with a
set of disjunctive arcé7, we start/-J AR at a schedule that

is consistent witl{7 and use a restricted move operafsq@
Where/\/l(G) (s) = {s € Ni(s) : sis consistent withG}.
Formally, the procedure is as follows.

Procedure used by B+B R+V S to generate heuris
tic schedules:

1.

Let s be the heuristic schedule generated by

Brucker.

. Starting as, runl-JAR for Lequw (N, M) it-
erations, using the move operawa). Lets
denote the best schedule found, and le¢ its
makespan.

3.
4,

Note that the per-search-tree-node rung-dfAR used to

perform heuristic scheduling are independent of the parallel

run of I-JAR used (as pet/ B+BR) to establish upper
bounds. Also note that in altering step (3) Bfucker, we

Setupper_bound — min(upper_bound, /).
Returns.

search tree when all descendents have either been prunedare changing theariable selectiorheuristic (which picks

or exhaustively explored. OncE is empty, the algorithm
terminates. Formally, we have the following.

Procedure used by B+BR to select a search tre
node to expand:

[¢)

1. Starting at the root of", follow first-ranked
branches until reaching an unexpanded nodg¢
G. Procesg- as per the pseudo-code§p.2.2,
and markG as “expanded”.

. If G is pruned, removey from the tree and
delete from7 any “expanded” nodes that no
longer have any children.

. Otherwise, addGy,Gs,..
panded” children of.

A%

.,G, as “unex-

In effect, in between updates t6 U B+BR simply per-
forms a depth-first search. Whesi changes,UB+BR

out variables on which to branch), which is distinct from
the branch orderingheuristic (which determines the order
in which branches of the search tree are explored).

6. Evaluation on Random JSP Instances

In this section we compare the performance of the algo-
rithms Brucker, DDS, and LDS (described in§2.2.2),
with that of UB, UB+BR, andU B+BR+V S (described

in §5) on random JSP instances.

6.1. Median Run Length

Using the methodology 0§3.2, we determine the median
number of iterations required to find a globally optimal
schedule for a randomiV by N JSP instance for each
N € {6,7,8,9,10,11,12,13} and each algorithmd €
{Brucker, DDS,LDS,UB,UB+BR,UB+BR+V S}.
Figure 4 presents the results. The key observation is that

Formally, letB be a branch ordering heuristic and let
be a randomV by M JSP instance. Call a search tree node
with disjunctive arc sef; optimalif there exists a globally
optimal schedule that contains all the arcgdnLet G4 be
an optimal search tree node at degtim the search tree for
I, and letG4, G, ..., G, be the children of7;, as ordered
by some branch ordering heuristic Theaccuracyof B at
at depthd, which we denote by(5B, d, N, M), is the proba-
bility that the first-ranked branclt;) is optimal.

Given a branch ordering heuristi$8, we estimate
a(B,d, N, M) (as a function ofi) as follows.

Iterations required to find optimal schedule

100000 ~
---©-- Brucker

--+--DDS
--A--LDS
--e-UB
-5-UB+BR

- -4 -UB+BR+VS

10000 4

1000 -

Median num. iterations
<)
o

\\

\
\
a

6 7 8 9 10 1 12 13
N = Num. jobs/machines

Procedure for estimating(3, d, N, M):

Figure 4. Median number of iterations required by vari-
ous branch and bound algorithms to find a globally optimal
schedule in a randorv by N JSP instance. Error bars are

95% confidence intervals.

Table 1: Performance on random 13x13 instances.

Algorithm Med. iter. | Med. equiv. iter.
Brucker 16300 16300

DDS 9220 9220

LDS 7300 7300

UB 2291 4582

UB+BR 650 1300
UB+BR+V S | 429 1287

e Compared tdBrucker, each of the three techniqués B,
UB+BR, andUB+BR+V S, respectively) reduces the
median number of iterations required to find a global op-
timum by a factor that increases with problem size.

in terms of CPU time. By design, an iteration of eitiiéB

or U B+BR takes approximately twice as long as an itera-
tion of Brucker, while an iteration o/ B+ BR+V S takes 1
approximately three times as long. Table 1 compares the
performance of the four algorithms on the largest instance

size, both in terms of raw iterations and “equivalent itera- 2.

tions”.
As judged by this table, the performancddB+BR+V S

is not significantly better than that 6fB+BR on the largest 3.

instance size. However, the trend in the data suggests that
UB+BR+V S will significantly outperformU B+BR on
larger instance sizes.

Both DDS and LDS outperformed the depth-first ver-
sion of Brucker. It seems likely that the performance of the

1. For each instancke Iy -

(a) Initialize G — 0, upper_bound «— 1.05 *
opt_makespan(I), andd — 0.

(b) LetGy, G, ..., G, be the children of7, as
ordered bys.

(c) Foreach € {1,2,...,n}, use an indepen-
dent run of Brucker to determine whether
G, is optimal. If G is optimal record
the pair(d, true); otherwise record the pair
(d, false).

(d) Let G; be a random optimal element of
{G1,Ga,...,Gy}; setG — G;; setd —
d+ 1; and go to (b).

2. For each integett > 0 for which some or-
dered pair of the form(d, V') was recorded,
take as an estimate of B, d, N, M) the pro-
portion of recorded pairs of the for(d,) for
whichV' = true.

4.

Figure 5 plotsa(B,d, N,N) as a function ofd for

) , ,) each N e {6,7,8,9,10,11,12} and for eachB &
The iterations of these four algorithms are not equivalent {BBrucker,

Bup+r}-
Examining Figure 5, we make four observations:

. ForallN, the trend is thad(Bgrucker, d, N, N) increases

as a function ofl.

For alld, the trend is thad (B, ucker, d, N, N) decreases
as a function ofV.

For every combination of N and d,

a(BUB+BR7 da Na N) > a(BBTuckeT7 d7 N, N)

For all N, the trend is thata(Byg+pr,d, N,N) —
a(BBrucker,d, N, N) decreases with.

Observation (1) is consistent with the conventional wis-

three hybrid algorithms could be further improved by using qom that branch ordering heuristics become more accurate

these tree search strategies.

6.2. Comparison ofBg,ycker aNd Byp+BR

at deeper nodes in the search tree (e.g., Walsh 1997), while
observations (2) and (3) are consistent with our expectations.
(4) deserves special explanation. The reason for (4) is that

To understand the difference between the median run when applied to a nod&,, By s+5r only makes a decision

lengths of UB and U B+BR we examine the behavior of

that differs from that oBBg,.,.crer If ™ IS CONsistent withty ;.

their branch ordering heuristics, referred to respectively as The probability that* is consistent withG; decreases with

BBrucker @NABy +BR-

d, and so the benefit @y 5, pr decreases with as well.

Table 2: Mean CPU seconds required by various algorithms
to find a globally optimal schedule. For stochastic algo-
rithms, 95% confidence intervals are given.

(A) Brucker branch ordering heuristic Inst. Size Brucker I-JAR UB+BR
19 abzb 10x10 | 6.3 33.4+10.7 | 4.3+£0.7
abz6 10x10 | 0.4 1.34+0.3 0.3+0.1
B filo6 [6x6 | <O0.1 <0.1 <0.1
g ft10 10x10 | 12.8 179.5+60.5| 9.5+ 1.9
2 la01 10x5 | < 0.1 <0.1 < 0.1
5 @02 | 10x5 | < 0.1 0.1£0 0.1+£0
3 @03 | 10x5 | < 0.1 0.1£0 <0.1
38 [a04 10x5 | 0.1 0.1+0 <0.1
a la05 10x5 | < 0.1 < 0.1 < 0.1
la06 15x5 | < 0.1 < 0.1 < 0.1
R la07 | 15x5 | < 0.1 <0.1 <0.1
Depth 1a08 15x5 | < 0.1 < 0.1 < 0.1
(B) UB+BR branch ordering heuristic :Zgg igig z 81 z 81 z 81
lall 20x5 | < 0.1 < 0.1 < 0.1
B lal2 20x5 | < 0.1 < 0.1 < 0.1
s al3 | 20x5 | < 0.1 <0.1 <0.1
e lal4 | 20x5 | <0.1 <0.1 <0.1
I lal5 20x5 | 0.1 < 0.1 0.1+0
F lal6 10x10 | 0.8 11.94+ 3.3 0.3+0.1
§ lal7 10x10 | 0.2 0.2+0.1 0.1+0
& [al8 10x10 | 1.0 0.3+0.1 0.2+0.1
lal9 10x10 | 4.2 0.9+0.2 0.8+ 0.2
0 . ; 2‘ : T i : 7 : . 1a20 10x10 | 4.2 1.0+ 0.3 0.3+0.1
Depth la22 15x10 | 82.5 329.2+84.0| 454+ 1.0
la23 15x10 | 44.6 0.1+0 0.1+0
. (C) Comparison la26 | 20x10 | 547.0 05+£0.1 11£02
[a30 20x10 | 3.8 0.2+0 0.6+0.1
T o0s | la31 30x10| 0.2 0.2+0 0.2+0
3 et Gk la32 | 30x10| < 0.1 0.1+0 <0.1
§ [a33 30x10| 1.8 0.1+0 0.44+0.1
g [a34 30x10| 0.3 0.3£0 0.8+0.1
3 [a35 30x10| 0.6 0.2+0 0.4+0.1
s orb01 | 10x10 | 80.3 81.1+ 254 | 29.6+ 8.6
2 orb02 | 10x10| 6.7 201£5.7 | 23+04
orb03 | 10x10 | 180 495+ 126 | 33.8+£10.4
0 : : : : . : : : ‘ orb04 | 10x10 | 23.8 191.54+44.4| 25.7+ 2.3
R e P ° orb05 | 10x10| 8.6 194.9+56.0 | 4.1+ 0.7
orb06 | 10x10 | 38.5 13.7+ 3.3 3.3+0.7
orb08 | 10x10 | 14.7 150.54+35.6 | 6.6+ 1.7
Figure 5: Accuracy of (ABBucker @nd (B)Byp+pr as a orb09 | 10x10| 3.4 12.7+ 3.1 29+0.6
function of depth for randoniV by N JSP instances. For orb10 | 10x10 | 2.7 1.7+04 04+01
ease of comparison (C) superimposes the curves from (A) [swv16 | 50x10 | 0.1 02+0 0.1+0
and (B) forv = 11. swvl7 | 50x10]| 0.1 02+0 0.1x0
swvl8 | 50x10| 0.1 0.2+0 0.1+0
swv19 | 50x10| 0.2 0.3+0 0.7+ 0.1
swv20 | 50x10 | 0.1 0.2+0 0.1+0
Total 1070 12774+ 145 134+ 14.5

7. OR Library Evaluation Kamarainen and Sakkout (2002) apply this approach to

In this section we compare the performancelfucker, the kernel resource feasibility problem. At_each search tree
I-JAR, UB+BR, andU B+BR+V'S on instances from the nodga, they relax the subproblem by removing resource con-
OR library. As stated i§3.2, all runs were performed on straints, then solve the relaxed problem with local search.
a 2.4 GHz Pentium IV with 512 MB of memory. First, we A resource constraint that is violated by the solution to the
ran Brucker with a time limit of 15 minutes on each of relaxation forms the basis for further branching. Nareyek
the 82 instances in the OR libraryBrucker proved that it et al.. (2003) use a similar approach to solve the decision
found the optimal schedule on 47 instances. For each such Yersion of the JSP (the decision version asks whether a
instance, we recorded the amount of time that elapsed be- schedule with makespan k exists). They perform a chal
fore Brucker first evaluated a globally optimal schedule (in search on eaqh SprrOblem’ and branch by examining a
general this is much less than the amount of time required to cOnstraint that is frequently violated by local search.
provethat the schedule is optimal). Then for each of these
47 instances, we rair JAR, UB+BR, andU B+BR+V S . .
50 times each, continuing each run until it found a globally 8.3. Discussion
optimal schedule. Table 2 presents the mean run lengths Our upper bounding technique (using upper bounds from
for Brucker, I-JAR, andUB+BR. The performance of an incomplete search to reduce the work that must be per-
UB+BR+V S was about a factor 1.5 worse than that of formed by a systematic search) has no doubt been used with-
U B+BR on most instances, and is not shown. out fanfare many times in practice. Our variable selection
Averaged over these 47 instances, the performance of technique is an instance of local search probing. Our branch
UB+BR is approximately 9.5 times better than that of ordering heuristic differs from the two techniques just dis-
I-JAR , 8 times better than that @&rucker, and 1.5 times cussed in that we use an independent run of iterated local
better than that of/ B+ BR+V S (not shown). We conjec- search (i.e., one that explores the entire search space, in-
ture that the advantages@fB+B R andU B+ BR+V S over dependent of the subspace currently being examined by the
Brucker and I-JAR would increase if we ran them on backtracking search) as guidance for a backtracking algo-
larger instances from the OR library. rithm that remains complete.

8. Related Work 9. Future Directions

In this section we discuss previous hybrids of local and sys- 9-1. Nogood Learning
tematic search, and indicate the relationship between our |n this paper we have focused on using information gained

techniques and previous work. from iterated local search to improve the performance of
_ _ branch and bound. But information can flow in the other
8.1. Local Search over Partial Assignments direction as well. In particular, once a search tree nGde

A number of algorithms have been proposed in which a lo- IS N0 longer open (i.e., branch and bound has proved that no
cal search is performed on partial assignments (i.e., assign- Schedule containing all the arcs @ can be optimal) it is
ments of values to a subset of the problem variables), where wasteful for iterated local search to explore schedules that
for each partial assignment, the unassigned variables are as-2r€ consistent witlir.

signed values using a systematic search. An early example Previous work has showed how learned nogoods can be
is the shifting bottleneck algorithm for job shop scheduling USed to createompletelocal search algorithms for satisfia-
(Adams, Balas, & Zawack 1988), in which the partial as- Pility (Fang & Ruml 2004) and job shop scheduling (Dilk-
signment includes a full set of disjunctive arcs for all ma- @& Duan, & Havens 2005). Both of these approaches use
chines except one. More recentlyj@&nbender et al. (2000) resolution as a source of nogoods, but could be adapted to
apply a technique of this form to a transportation network instéad use branch and bound.

design problem. Focacci et al. (2003) give a survey of in-

stances of this general technique. 9.2. Improving By p+sr
A related but distinct approach is to use local search to Figure 5 (C) shows that the improvement in accuracy ob-
find the largest possibleonsistentpartial assignment (i.e., tained by usingByg+pr in place of Bg,ycker decreases

a partial assignment that cannot be trivially pruned due to with depth. It seems that it should be possible to obtain a
lower bounds or constraint violations). Instances of this more uniform improvement ovelf ..,k Dy performing
approach include the constraint satisfaction algorithm of additional runs off-JAR and/or extracting more informa-
Zhang and Zhang (1996) and that of Prestwich (2002). tion from the existing run.

8.2. Local Search Probing 10. Conclusions

A number of recent papers have used local search “probes” We have presented three techniques for incorporating it-
to guide chronological backtracking. For each node in the erated local search into branch and bound. Iterated local
search tree, a local search is performed on the subproblemsearch can be used to establish upper bounds and to aug-
defined by that node. Information from the local search is ment the branching ordering and variable selection heuris-
then used for variable and value selection. tics. Empirically, we showed that each of these techniques

reduces the median number of iterations required to find a
globally optimal schedule in a randoi by N JSP in-
stance. AsN increases, each of the three techniques pro-
vides a larger boost in performance.

References

Adams, J.; Balas, E.; and Zawack, D. 1988. The shifting
bottleneck procedure for job shop schedulinjlanage-
ment Scienc84(3):391-401.

Brinkkotter, W., and Brucker, P. 2001. Solving open in-
stances for the job-shop problem by parallel head-tail ad-
justments.Journal of Scheduling:53—64.

Brucker, P.; Jurisch, B.; and Sievers, B. 1992.
Job-shop (C-codes). European Journal of Oper-
ational Research57:132-133. Code available at
http://optimierung.mathematik.uni-kl.
de/ORSEP/contents.html

Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematiet9(1-3):107-127.

Budenbender, K.; Gmert, T.; and Sebastian, H.-J. 2000. A
hybrid tabu search/branch-and-bound algorithm for the di-
rect flight network design probleriransportation Science
34(4):364-380.

Dilkina, B.; Duan, L.; and Havens, W. 2005. Extending
Systematic Local Search for Job Shop Scheduling Prob-
lems. InEleventh International Conference on Principles
and Practice of Constraint Programming

Fang, H., and Ruml, W. 2004. Complete local search
for propositional satisfiability. InProceedings of the
Nineteenth National Conference on Artificial Intelligence
(AAAI-04) 161-166.

Fisher, H., and Thompson, G. L. 1963. Probabilistic learn-
ing combinations of local job-shop scheduling rules. In
Muth, J. F., and Thompson, G. L., edsidustrial Schedul-
ing. Englewood Cliffs, NJ: Prentice-Hall. 225-251.

Focacci, F.; Laburthe, F.; and Lodi, A. 2003. Local search
and constraint programming. In Glover, F., and Kochen-
berger, G. A., edsHandbook of Metaheuristic8oston,
MA: Kluwer. 369-404.

Ginsberg, M. L., and McAllester, D. A. 1994. GSAT
and Dynamic Backtracking. In Torasso, P.; Doyle, J.;
and Sandewall, E., edsProceedings of the 4th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning226—237. Morgan Kaufmann.

Ginsberg, M. L. 1993. Dynamic backtrackingournal of
Artificial Intelligence Research:25-46.

Gomes, C. 2003. Complete randomized backtrack search.

In Milano, M., ed.,Constraint and Integer Programming:
Toward a Unified MethodologyBoston, MA: Kluwer.
233-283.

Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Mellish, C. S., edrpceedings of the
Fourteenth International Joint Conference on Artificial In-
telligence (IJCAI-95); Vol. 1607—615. Monteal, Qebec,
Canada: Morgan Kaufmann, 1995.

Kamarainen, O., and Sakkout, H. E. 2002. Local prob-
ing applied to scheduling. IRrinciples and Practice of
Constraint Programmingl55-171.

Mattfeld, D. C.; Bierwirth, C.; and Kopfer, H. 1999. A
search space analysis of the job shop scheduling problem.
Annals of Operations Researg:441-453.

Nareyek, A.; Smith, S.; and Ohler, C. 2003. Integrating lo-
cal search advice into a refinment search solver (or not). In
Proceedings of the CP-03 Workshop on Cooperative Con-
straint Problem Solver29-43.

Nowicki, E., and Smutnicki, C. 2001. Some new ideas
in TS for job shop scheduling. Technical Report 50/2001,
University of Wroclaw.

Prestwich, S. 2002. Combining the scalability of local
search with the pruning techniques of systematic search.
Annals of Operations Researtfi5:51-72.

Roy, B., and Sussmann, B. 1964. Les p&shés dordon-
nancement avec contraintes disjonctives. Note D.S. no. 9
bis, SEMA, Paris, France,&embre.

Streeter, M. J., and Smith, S. F. 2005. Characterizing
the distribution of low-makespan schedules in the job shop
scheduling problem. IRroceedings of the Fifteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2005)61-70.

Taillard, E. 1994. Parallel taboo search techniques for the
job shop scheduling proble®@RSA Journal on Computing
6:108-117.

van Laarhoven, P.; Aarts, E.; and Lenstra, J. 1992. Job shop
scheduling by simulated annealin@perations Research
40(1):113-125.

Walsh, T. 1997. Depth-bounded discrepancy search. In
IJCAI, 1388-1395.

Watson, J.-P.; Howe, A. E.; and Whitley, L. D. 2003a. An
analysis of iterated local search for job shop scheduling. In
Proceedings of the Fifth Metaheuristics International Con-
ference

Watson, J.-P.; Whitley, L. D.; and Howe, A. E. 2003b. A
dynamic model of tabu search for the job shop scheduling
problem. InMultidisciplinary International Conference on
Scheduling

Zhang, J., and Zhang, H. 1996. Combining local search
and backtracking techniques for constraint satisfaction. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI 1996)369-374.

