
Exploiting the Power of Local Search in a Branch and Bound
Algorithm for Job Shop Scheduling
Matthew J. Streeter1 and Stephen F. Smith2

Computer Science Department
and Center for the Neural Basis of Cognition1 and

The Robotics Institute2

Carnegie Mellon University
Pittsburgh, PA 15213
{matts, sfs}@cs.cmu.edu

Abstract

This paper presents three techniques for using an iter-
ated local search algorithm to improve the performance
of a state-of-the-art branch and bound algorithm for job
shop scheduling. We use iterated local search to obtain
(i) sharpened upper bounds, (ii) an improved branch-
ordering heuristic, and (iii) and improved variable-
selection heuristic. On randomly-generated instances,
our hybrid of iterated local search and branch and bound
outperforms either algorithm in isolation by more than
an order of magnitude, where performance is measured
by the median amount of time required to find a globally
optimal schedule. We also demonstrate performance
gains on benchmark instances from the OR library.

1. Introduction
Iterated local search and chronological backtracking have
complementary strengths and weaknesses. The strength of
backtracking is its systematicity: it is guaranteed to find a
global optimum in a bounded amount of time. Its weakness
is the fact that it performs a depth-first search: once it vis-
its a region of the search space, it must explore that region
exhaustively before moving onward, potentially wasting a
lot of time. Iterated local search moves more freely about
the search space and often finds a near-optimal solution rel-
atively quickly in practice. The downside is that the amount
of time it searches before finding a global optimum is un-
bounded.

Previous work has addressed the weaknesses of chrono-
logical backtracking in a number of ways: through random-
ization and restart (Gomes 2003), tree search strategies such
as limited discrepancy search (Harvey & Ginsberg 1995)
and depth-bounded discrepancy search (Walsh 1997), intel-
ligent backtracking techniques such as dynamic and partial-
order dynamic backtracking (Ginsberg 1993; Ginsberg &
McAllester 1994), and other methods. There have also been
a number of attempts to exploit the power of local search
within chronological backtracking (Zhang & Zhang 1996;
Kamarainen & Sakkout 2002; Nareyek, Smith, & Ohler
2003). The latter techniques are discussed more fully in§8.

In this paper we explore three simple ways of exploiting
the power of iterated local search within branch and bound:

1. Upper bounds. Near-optimal solutions provide sharp-
ened upper bounds that can be used to prune additional

nodes in the branch and bound search tree.

2. Branch ordering. In practice, a near-optimal solution to
an optimization problem will often have many attributes
(i.e., assignments of values to variables) in common with
an optimal solution. In this case, the heuristic ordering
of branches can be improved by giving preference to a
branch that is consistent with the near-optimal solution.

3. Variable selection.The heuristic solutions used for vari-
able selection at each node of the search tree can be im-
proved by local search.

We demonstrate the power of these techniques on the job
shop scheduling problem, by hybridizing theI-JAR iter-
ated local search algorithm of Watson el al. (2003a) with
the branch and bound algorithm of Brucker et al. (1994).

1.1. Contributions
The primary contributions of this work are as follows.

• We quantitatively compare the performance of iterated
local search and branch and bound on random JSP in-
stances. The results of this comparison nicely illustrate
the complementary strengths of these two classes of al-
gorithms: the branch and bound algorithm is orders of
magnitude more efficient at finding a globally optimal
schedule, while iterated local search is orders of magni-
tude more efficient at finding a near-optimal schedule.

• We show experimentally that for random square JSP in-
stances, the near-optimal schedules that are found quickly
by iterated local search are typically only a short distance
away from the nearest globally optimal schedule. This
suggests using the results of iterated local search to guide
the branch ordering decisions made by branch and bound,
and we show that such an approach does in fact lead to a
more accurate branch ordering heuristic.

• Motivated by these observations, we show how to use it-
erated local search to improve the upper bounds, branch
ordering heuristic, and variable selection heuristic used
in branch and bound. On random instances, we find that
each of these techniques improves performance by a fac-
tor that increases with problem size, where performance
is measured by the median time required to find a globally
optimal schedule.

2. Background
2.1. The Job Shop Scheduling Problem
We consider the widely studied makespan-minimization ver-
sion of the job shop scheduling problem (J‖Cmax), which
we refer to simply as the JSP.

An N by M instance of the JSP is a set ofN jobs, each of
which is a sequence ofM operations. Each operation must
be performed on a designated machine for a specified dura-
tion, without interruption. There areM machines, and each
job uses each machine exactly once. A schedule assigns start
times to each operation such that

1. no machine is scheduled to process more than one opera-
tion at the same time, and

2. the ordering of operations within each job is respected.

Themakespanof a schedule is equal to the maximum com-
pletion time (i.e., start time plus duration) of any operation.
We consider the makespan-minimization version of the job
shop scheduling problem, in which the objective is to find a
schedule that minimizes the makespan.

It is convenient to represent a schedule by itsdisjunctive
graph(Roy & Sussmann 1964). In a disjunctive graph, there
is a vertex corresponding to each operation in the problem
instance, as well as two special vertices called thesource
and thesink. There are directed edges pointing from the
source into (the vertex corresponding to) the first operation
of each job, from the last operation of each job into the sink,
and from each operation into the next operation (if any) in
the job. A directed edge from operationo1 to operationo2

indicates thato1 completes beforeo2 starts. The orienta-
tion of all the directed edges just discussed is dictated by the
problem instance, and these directed edges are calledcon-
junctive arcs. The remaining edges connect fixed pairs of
operations, but their orientation is defined by a particular
schedule. Thesedisjunctive edgesconnect all pairs of oper-
ations performed on the same machine. A disjunctive edge
with an assigned direction is called adisjunctive arc. The
weight of each arc is given by the duration of the operation
that the edge points out of (or zero if the edge points out
of the source). Acritical path is a longest (weighted) path
from source to sink in the (directed) disjunctive graph that
represents some particular schedule. It can be shown that
the makespan of the schedule is equal to the length of its
critical path.

Figure 1 illustrates (A) a JSP instance, (B) a schedule for
that instance, and (C) the corresponding disjunctive graph.

2.1.1. Distance Between Schedules.Given two schedules
s ands′, we define the distance‖s − s′‖ between them as
the proportion of disjunctive edges that point in opposite di-
rections in the two schedules (Mattfeld, Bierwirth, & Kopfer
1999).

2.2. Algorithms for Job Shop Scheduling
We focus our efforts on a single iterated local search algo-
rithm (I-JAR) and a single branch and bound algorithm
(Brucker). We choseI-JAR because of its simplicity and
its demonstrated performance on benchmark instances of the

€

J1
1

€

J2
1

€

J3
1

€

J4
1

€

J1
2

€

J2
2

€

J3
2

€

J4
2

€

J1
1

€

J2
1

€

J3
1

€

J4
1

€

J1
2

€

J2
2

€

J3
2

€

J4
2

€

J1

time

€

J 2

:

:

(A) JSP instance (B) JSP schedule

€

J1
1

€

J2
1

€

J3
1

€

J4
1

€

J1
2

€

J2
2

€

J3
2

€

J4
2

o∅ o*

(C) Disjunctive graph

Figure 1: (A) A 2x4 instance of the JSP with jobs
J1 and J2. Job J1 consists of the sequence of oper-
ations (J1

1 , J1
2 , J1

3 , J1
4), and J2 consists of the sequence

(J2
1 , J2

2 , J2
3 , J2

4). Each operation is represented by a rect-
angle whose texture represents the machine on which the
operation is performed and whose width is proportional to
the operation’s duration. (B) A JSP schedule assigns a start
time to each operation. (C) A disjunctive graph represents
start times indirectly by defining precedence relations be-
tween each pair of operations performed on the same ma-
chine. Hereo∅ is source ando∗ is the sink.

JSP. We choseBrucker because of its performance and be-
cause code for it is freely available online.

2.2.1. I-JAR. Watson et al. (2003a) present a simple it-
erated local search algorithm calledI-JAR whose perfor-
mance is competitive with the tabu search algorithm of Tail-
lard (1994) on benchmark instances from the OR library.
I-JAR performs a series of iterations. In each iteration,
it first descends to a local optimum, then escapes from the
local optimum by making a number of random moves.

Formally, letN1(s) denote the set of all schedules that
can be obtained froms by reversing the orientation of a
single disjunctive arc that belongs to a critical path (van
Laarhoven, Aarts, & Lenstra 1992).I-JAR is defined as
follows.

ProcedureI-JAR:

1. Initializecur ← a randomly-generated sched-
ule.

2. Do:

(a) (Descent to local optimum).For each sched-
ules ∈ N1(cur), in random order:

i. If makespan(s) < makespan(cur) then
setcur ← s and go to 2 (a).

(b) With probability 1
100 , setl ← 5; otherwise

setl← 2.
(c) (Random walk).For i from 1 tol:

i. Let s be a random element ofN1(cur), and
setcur ← s.

2.2.2. Brucker’s branch and bound algorithm. Brucker
et al. (1994) present a branch and bound algorithm for
job shop scheduling, hereafter referred to asBrucker.
As in other branch and bound algorithms for job shop
scheduling, each search tree node inBrucker represents a
set of disjunctive arcs (the “fixed arcs”) that must be present
in all descendents of that node. Branches are generated by
constructing a schedule consistent with the fixed arcs and
examining (one of) the schedule’s critical path(s). Formally,
if G is a set of disjunctive arcs, the procedureBrucker(G)
is as follows (upper bound is a global variable initialized
to∞).

ProcedureBrucker(G):

1. (Constraint propagation).Add to G disjunc-
tive arcs that must be present in any schedule
with makespan< upper bound.

2. (Pruning). If lower bound(G) ≥
upper bound return.

3. (Heuristic scheduling).Using a priority dis-
patching rule, generate a schedules that is
consistent withG. Set upper bound ←
min(upper bound,makespan(s)).

4. (Branching).Find a critical path,P , in s. P is
used to define branchesG1, G2, . . . , Gn (the
order of the branches is determined heuristi-
cally using data obtained during the computa-
tion of lower bounds). Fori from 1 ton:

(a) CallBrucker(Gi).

We will refer to steps 1-3 in the above code as aniteration
of Brucker. The code forBrucker is freely available via
ORSEP (Brucker, Jurisch, & Sievers 1992).

Among systematic search algorithms, the performance of
Brucker is state-of-the-art for smaller benchmark instances
from the OR library and among the best for larger instances
(Brinkkötter & Brucker 2001).

We consider two additional algorithms,DDS andLDS,
that are identical toBrucker except that they do not use a
depth-first tree search strategy.DDS instead uses depth-
bounded discrepancy search (Walsh 1997), whileLDS uses
limited discrepancy search (Harvey & Ginsberg 1995). As
compared to depth-first search, these two tree search strate-
gies have been found to reduce the number of nodes that
must be explored before finding an optimal or near-optimal
solution.

3. Methodology
This section describes how we evaluate the performance of
algorithms for job shop scheduling.

3.1. Test Instances
To generate a randomN by M JSP instance we let the order
in which the machines are used by each job be a random per-
mutation of{1, 2, ...,M}, and draw each operation duration
uniformly at random from{1, 2, ..., 100}.

For eachN ∈ {6, 7, 8, 9, 10, 11, 12, 13} we generate a
set,IN,N , of randomN by N JSP instances. ForN ≤ 12,
|IN,N | = 1000, while |I13,13| = 150. For each ran-
dom instanceI, we usedBrucker to determine its optimal
makespan, denotedopt makespan(I).

Our evaluation focuses on square JSP instances (i.e., those
with N = M) because they have been found to be the most
difficult in practice (Fisher & Thompson 1963).

3.2. Performance Metric
In quantifying the performance of an algorithmA, we fo-
cus on the amount of time required to find an optimal or
near-optimal schedule with a specified minimum probabil-
ity. Specifically, for real numbersq ∈ (0, 1) andρ ≥ 1 and
integersN andM , we determine the minimumt such that,
whenA is run on a randomN by M JSP instance fort sec-
onds, with probability at leastq it finds a schedule whose
makespan is at mostρ times the optimal makespan.

Given a setIN,M of N by M JSP instances with known
optimal makespans, our procedure for determiningt is
straightforward. We runA on each instanceI ∈ IN,M

with a time limit of T = 1 second, terminating the run
immediately if it finds aρ-optimal schedule (i.e., a schedule
whose makespan is at mostρ times the optimal makespan).
For each instance, we record the amount of time thatA ran
and whether or not it found aρ-optimal schedule. If the
proportion of runs that found aρ-optimal schedule by time
T is at leastq, we find the smallestt ≤ T such that the
proportion of runs that found aρ-optimal schedule by time
t is at leastq. Otherwise, we doubleT and try again. Each
run ofA on a particular instanceI uses the same random
number generator seed, so that our results would be exactly
the same (though it would take longer to compute them) if
we had initializedT to infinity.

All experiments reported in this paper were performed on
a 2.4 GHz Pentium IV with 512 MB of memory.

4. Motivations
In this section we present some experiments that motivate
this work.

4.1. Comparing Local and Exhaustive Search
4.1.1. Methodology. For eachN ∈ {6, 7, 8, 9, 10, 11},
eachρ ∈ {1, 1.05}, and eachA ∈ {I-JAR,Brucker},
we used the procedure described in§3.2 to determine the
number of iterations required byA to find a schedule whose
makespan is within a factorρ of optimal with probability at
leastq = 0.9.

4.1.2. Results Figure 2 shows the time (in seconds) re-
quired byI-JAR andBrucker to find either (A) an opti-
mal schedule or (B) a near-optimal schedule with probability
at leastq = 0.9 when run on a randomN byN JSP instance.
The key observations are that

• the time required byI-JAR to find a globally optimal
schedule exceeds the time required byBrucker by a fac-
tor that increases with problem size, ranging from 5.23

(A) Time to find optimal schedule

0.001

0.01

0.1

1

10

100

1000

6 7 8 9 10 11
N = Num. jobs/machines

T
im

e
(s

)
(9

0t
h

 p
er

ce
n

ti
le

) I-JAR

Brucker

(B) Time to find near-optimal schedule

0.001

0.01

0.1

1

6 7 8 9 10 11
N = Num. jobs/machines

T
im

e
(s

)
(9

0t
h

 p
er

ce
n

ti
le

)

I-JAR

Brucker

Figure 2: Amount of time (90th percentile) required by
I-JAR andBrucker find (A) a globally optimal schedule
and (B) a schedule whose makespan is within a factor 1.05
of optimal, when run on a randomN by N JSP instance.
Error bars are 95% confidence intervals.

(for 6x6 instances) to 14.7 (for 11x11 instances); how-
ever,

• the amount of time required byBrucker to find anear-
optimal schedule exceeds the time required byI-JAR
by a factor that increases with problem size, ranging from
1.03 (for 6x6 instances) to 14.4 (for 11x11 instances).

These results suggest that a short run ofI-JAR of-
ten yields a near-optimal schedule, thus providing an upper
bound that may improve the performanceBrucker.

4.2. Mean Distance to Nearest Optimal Schedule
In this section we estimate the mean distance between sched-
ules found byI-JAR and the nearest globally optimal
schedule (recall that distance between schedules is measured
by the proportion of disjunctive edges whose orientations
differ).

4.2.1. Methodology For each instanceI ∈ I6,6 ∪ I7,7 ∪
I8,8, we runI-JAR until it evaluates a globally optimal
schedule. Forρ ≥ 1, let sρ be the first schedule evaluated
by I-JAR whose makespan is within a factorρ of optimal.
For eachρ ∈ {1, 1.01, . . . , 1.25}, we determine the dis-
tance fromsρ to the nearest optimal schedule. The distance

Mean distance to nearest optimal schedule

0

0.05

0.1

0.15

0.2

0.25

1 1.05 1.1 1.15 1.2 1.25
ρ

D
is

ta
n

ce

6x6 instances
7x7 instances
8x8 instances

Figure 3: Mean distance from a schedule within a factorρ of
optimal to the nearest optimal schedule. Error bars are 95%
confidence intervals.

is computed using a “radius-limited” version ofBrucker
which determines, for a given radiusr and center sched-
ule sc, whether there exists an optimal schedule in the set
{s : ‖s − sc‖ ≤ r}. The smallestr for which this set con-
tains an optimal schedule is determined using binary search.

4.2.2. Results Figure 3 presents our results. For eachN ∈
{6, 7, 8}, Figure 3 shows that the mean distance fromsρ to
the nearest optimal schedule is an increasing function ofρ.
For N = 8, for example, the mean distance forρ = 1.01 is
0.054, while the mean distance forρ = 1.25 is 0.184.

Suppose that a search tree nodeG has branches
G1, G2, . . . , Gn, and lets∗ be a known near-optimal sched-
ule that is consistent withG (i.e., the disjunctive graph ofs∗

contains all the disjunctive arcs in the setG). Based on Fig-
ure 3, it is likely that there exists a globally optimal schedule
s̄ that has many attributes in common withs∗. This suggests
that if a branchGi is consistent withs∗ it may also be consis-
tent with s̄, so if we want to minimize the work that branch
and bound must perform before finding a global optimum it
makes sense to moveGi to the front of the list of branches.

The results in Figure 3 are not that surprising in light of
previous work. For example, the Markov model of Watson
et al. (2003b) shows that as a tabu search run progresses
the mean distance to the nearest global optimum decreases.
Our results are also consistent with the “big valley” picture
of JSP landscapes, for which there is empirical (Nowicki &
Smutnicki 2001) as well as theoretical evidence (Streeter &
Smith 2005), especially for randomN by M JSP instances
with N

M u 1.

5. Improving Branch and Bound
5.1. Upper Bounds
The data presented in§4.1 show that I-JAR finds a near-
optimal schedule (i.e., one whose makespan is within a fac-
tor 1.05 of optimal) more quickly than Brucker’s branch and
bound algorithm. This suggests running the two algorithms
in parallel, each at 50% strength, and using the schedules
discovered byI-JAR to update the upper bound used by

Brucker. We refer to this hybrid algorithm asUB.
Specifically, for an algorithmA ∈ {I-JAR,Brucker},

let TA(N,M) denote the mean CPU time per iteration that
A requires when run on a randomN by M JSP instance.

Let Iequiv(N,M) =
⌊

TBrucker(N,M)
TI-JAR(N,M)

⌋
. UB is defined as

follows.

ProcedureUB:

1. Do:

(a) PerformIequiv(N,M) iterations ofI-JAR.
Let ` be the makespan of the best sched-
ule found byI-JAR. Setupper bound ←
min(upper bound, `).

(b) Perform a single iteration ofBrucker.

5.2. Branch Ordering
The results of§4.2 show that near-optimal schedules tend to
have many disjunctive arcs in common with globally optimal
schedules. We define a hybrid algorithmUB+BR that is
designed to take advantage of this fact. LikeUB, UB+BR
runsBrucker andI-JAR in parallel and uses the sched-
ules found byI-JAR to update upper bounds. Addition-
ally, UB+BR alters the branch ordering heuristic used by
Brucker as follows:

• Let (G1, G2, . . . , Gn) be the branches as ordered by
Brucker. Let s∗ be the best schedule found so far by
I-JAR. If for somei, Gi is consistent withs∗ (i.e., s∗

contains all the disjunctive arcs inGi) then moveGi to
the front of the list of branches.

Note that whens∗ changes, the branch ordering heuristic
changes as well, and we may want to backtrack to revisit
branching decisions that were made earlier in the search. To
facilitate this, we maintain in memory a treeT of search tree
nodes. Each node inT is initially marked as “unexpanded”,
then after constraint propagation, lower bounding, and
branching have been performed as per§2.2.2, the node
is marked as “expanded”. Nodes are deleted from the
search tree when all descendents have either been pruned
or exhaustively explored. OnceT is empty, the algorithm
terminates. Formally, we have the following.

Procedure used byUB+BR to select a search tree
node to expand:

1. Starting at the root ofT , follow first-ranked
branches until reaching an unexpanded node
G. ProcessG as per the pseudo-code in§2.2.2,
and markG as “expanded”.

2. If G is pruned, removeG from the tree and
delete fromT any “expanded” nodes that no
longer have any children.

3. Otherwise, addG1, G2, . . . , Gn as “unex-
panded” children ofG.

In effect, in between updates tos∗ UB+BR simply per-
forms a depth-first search. Whens∗ changes,UB+BR

backtracks to the root node of the search tree and contin-
ues the search using the new branch ordering (but without
discarding the work that has already been done).

If s∗ is updatedn times, the memory overhead (as com-
pared to depth-first search) is at most a factor ofn. When
each operation duration is drawn from{1, 2, . . . , 100}, n ≤
100NM , so the memory required byUB+BR is at most
100NM times that required byBrucker in the worst case.
In practice, the actual memory requirement is much less.

5.3. Variable Selection
Our third hybrid algorithm,UB+BR+V S, is identical to
UB+BR except that it uses local search to generate heuris-
tic schedules (step (3) of the pseudo-code forBrucker pre-
sented in§2.2.2), rather than using a priority dispatching
rule.

To generate a heuristic schedule that is consistent with a
set of disjunctive arcsG, we startI-JAR at a schedule that
is consistent withG and use a restricted move operatorN (G)

1

whereN (G)
1 (s) = {s ∈ N1(s) : s is consistent withG}.

Formally, the procedure is as follows.

Procedure used byUB+BR+V S to generate heuris-
tic schedules:

1. Let s be the heuristic schedule generated by
Brucker.

2. Starting ats, runI-JAR for Iequiv(N,M) it-

erations, using the move operatorN (G)
1 . Let ŝ

denote the best schedule found, and letˆ̀be its
makespan.

3. Setupper bound← min(upper bound, ˆ̀).
4. Returnŝ.

Note that the per-search-tree-node runs ofI-JAR used to
perform heuristic scheduling are independent of the parallel
run of I-JAR used (as perUB+BR) to establish upper
bounds. Also note that in altering step (3) ofBrucker, we
are changing thevariable selectionheuristic (which picks
out variables on which to branch), which is distinct from
the branch orderingheuristic (which determines the order
in which branches of the search tree are explored).

6. Evaluation on Random JSP Instances
In this section we compare the performance of the algo-
rithms Brucker, DDS, and LDS (described in§2.2.2),
with that of UB, UB+BR, andUB+BR+V S (described
in §5) on random JSP instances.

6.1. Median Run Length
Using the methodology of§3.2, we determine the median
number of iterations required to find a globally optimal
schedule for a randomN by N JSP instance for each
N ∈ {6, 7, 8, 9, 10, 11, 12, 13} and each algorithmA ∈
{Brucker,DDS,LDS,UB,UB+BR,UB+BR+V S}.
Figure 4 presents the results. The key observation is that

Iterations required to find optimal schedule

1

10

100

1000

10000

100000

6 7 8 9 10 11 12 13
N = Num. jobs/machines

M
ed

ia
n

 n
u

m
. i

te
ra

ti
o

n
s

Brucker

DDS

LDS

UB

UB+BR

UB+BR+VS

Figure 4: Median number of iterations required by vari-
ous branch and bound algorithms to find a globally optimal
schedule in a randomN by N JSP instance. Error bars are
95% confidence intervals.

Table 1: Performance on random 13x13 instances.

Algorithm Med. iter. Med. equiv. iter.
Brucker 16300 16300
DDS 9220 9220
LDS 7300 7300
UB 2291 4582
UB+BR 650 1300
UB+BR+V S 429 1287

• Compared toBrucker, each of the three techniques (UB,
UB+BR, andUB+BR+V S, respectively) reduces the
median number of iterations required to find a global op-
timum by a factor that increases with problem size.

The iterations of these four algorithms are not equivalent
in terms of CPU time. By design, an iteration of eitherUB
or UB+BR takes approximately twice as long as an itera-
tion of Brucker, while an iteration ofUB+BR+V S takes
approximately three times as long. Table 1 compares the
performance of the four algorithms on the largest instance
size, both in terms of raw iterations and “equivalent itera-
tions”.

As judged by this table, the performance ofUB+BR+V S
is not significantly better than that ofUB+BR on the largest
instance size. However, the trend in the data suggests that
UB+BR+V S will significantly outperformUB+BR on
larger instance sizes.

Both DDS andLDS outperformed the depth-first ver-
sion ofBrucker. It seems likely that the performance of the
three hybrid algorithms could be further improved by using
these tree search strategies.

6.2. Comparison ofBBrucker andBUB+BR

To understand the difference between the median run
lengths ofUB andUB+BR we examine the behavior of
their branch ordering heuristics, referred to respectively as
BBrucker andBUB+BR.

Formally, letB be a branch ordering heuristic and letI
be a randomN by M JSP instance. Call a search tree node
with disjunctive arc setG optimal if there exists a globally
optimal schedule that contains all the arcs inG. Let Gd be
an optimal search tree node at depthd in the search tree for
I, and letG1, G2, . . . , Gn be the children ofGd, as ordered
by some branch ordering heuristicB. Theaccuracyof B at
at depthd, which we denote bya(B, d,N, M), is the proba-
bility that the first-ranked branch (G1) is optimal.

Given a branch ordering heuristicB, we estimate
a(B, d,N, M) (as a function ofd) as follows.

Procedure for estimatinga(B, d,N, M):

1. For each instanceI ∈ IN,M :

(a) Initialize G ← ∅, upper bound ← 1.05 ∗
opt makespan(I), andd← 0.

(b) LetG1, G2, . . . , Gn be the children ofG, as
ordered byB.

(c) For eachi ∈ {1, 2, . . . , n}, use an indepen-
dent run ofBrucker to determine whether
Gi is optimal. If G1 is optimal record
the pair(d, true); otherwise record the pair
(d, false).

(d) Let Gi be a random optimal element of
{G1, G2, . . . , Gn}; setG ← Gi; setd ←
d + 1; and go to (b).

2. For each integerd ≥ 0 for which some or-
dered pair of the form(d, V) was recorded,
take as an estimate ofa(B, d,N, M) the pro-
portion of recorded pairs of the form(d, V) for
whichV = true.

Figure 5 plotsa(B, d,N, N) as a function ofd for
each N ∈ {6, 7, 8, 9, 10, 11, 12} and for eachB ∈
{BBrucker,BUB+BR}.

Examining Figure 5, we make four observations:

1. For allN , the trend is thata(BBrucker, d,N, N) increases
as a function ofd.

2. For alld, the trend is thata(BBrucker, d,N, N) decreases
as a function ofN .

3. For every combination of N and d,
a(BUB+BR, d,N, N) > a(BBrucker, d,N, N).

4. For all N , the trend is thata(BUB+BR, d,N, N) −
a(BBrucker, d,N, N) decreases withd.

Observation (1) is consistent with the conventional wis-
dom that branch ordering heuristics become more accurate
at deeper nodes in the search tree (e.g., Walsh 1997), while
observations (2) and (3) are consistent with our expectations.
(4) deserves special explanation. The reason for (4) is that
when applied to a nodeGd, BUB+BR only makes a decision
that differs from that ofBBrucker if s∗ is consistent withGd.
The probability thats∗ is consistent withGd decreases with
d, and so the benefit ofBUB+BR decreases withd as well.

(A) Brucker branch ordering heuristic

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

Depth

P
r[

co
rr

ec
t

b
ra

n
ch

 t
ak

en
]

6x6
7x7
8x8
9x9
10x10
11x11
12x12

(B) UB+BR branch ordering heuristic

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

Depth

P
r[

co
rr

ec
t

b
ra

n
ch

 t
ak

en
]

6x6
7x7
8x8
9x9
10x10
11x11
12x12

(C) Comparison

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5 6 7 8 9

Depth

P
r[

co
rr

ec
t

b
ra

n
ch

 t
ak

en
]

11x11 (UB+BR)
11x11 (Brucker)

Figure 5: Accuracy of (A)BBrucker and (B)BUB+BR as a
function of depth for randomN by N JSP instances. For
ease of comparison (C) superimposes the curves from (A)
and (B) forN = 11.

Table 2: Mean CPU seconds required by various algorithms
to find a globally optimal schedule. For stochastic algo-
rithms, 95% confidence intervals are given.

Inst. Size Brucker I-JAR UB+BR
abz5 10x10 6.3 33.4± 10.7 4.3± 0.7
abz6 10x10 0.4 1.3± 0.3 0.3± 0.1
ft06 6x6 < 0.1 < 0.1 < 0.1
ft10 10x10 12.8 179.5± 60.5 9.5± 1.9
la01 10x5 < 0.1 < 0.1 < 0.1
la02 10x5 < 0.1 0.1± 0 0.1± 0
la03 10x5 < 0.1 0.1± 0 < 0.1
la04 10x5 0.1 0.1± 0 < 0.1
la05 10x5 < 0.1 < 0.1 < 0.1
la06 15x5 < 0.1 < 0.1 < 0.1
la07 15x5 < 0.1 < 0.1 < 0.1
la08 15x5 < 0.1 < 0.1 < 0.1
la09 15x5 < 0.1 < 0.1 < 0.1
la10 15x5 < 0.1 < 0.1 < 0.1
la11 20x5 < 0.1 < 0.1 < 0.1
la12 20x5 < 0.1 < 0.1 < 0.1
la13 20x5 < 0.1 < 0.1 < 0.1
la14 20x5 < 0.1 < 0.1 < 0.1
la15 20x5 0.1 < 0.1 0.1± 0
la16 10x10 0.8 11.9± 3.3 0.3± 0.1
la17 10x10 0.2 0.2± 0.1 0.1± 0
la18 10x10 1.0 0.3± 0.1 0.2± 0.1
la19 10x10 4.2 0.9± 0.2 0.8± 0.2
la20 10x10 4.2 1.0± 0.3 0.3± 0.1
la22 15x10 82.5 329.2± 84.0 4.5± 1.0
la23 15x10 44.6 0.1± 0 0.1± 0
la26 20x10 547.0 0.5± 0.1 1.1± 0.2
la30 20x10 3.8 0.2± 0 0.6± 0.1
la31 30x10 0.2 0.2± 0 0.2± 0
la32 30x10 < 0.1 0.1± 0 < 0.1
la33 30x10 1.8 0.1± 0 0.4± 0.1
la34 30x10 0.3 0.3± 0 0.8± 0.1
la35 30x10 0.6 0.2± 0 0.4± 0.1
orb01 10x10 80.3 81.1± 25.4 29.6± 8.6
orb02 10x10 6.7 20.1± 5.7 2.3± 0.4
orb03 10x10 180 49.5± 12.6 33.8± 10.4
orb04 10x10 23.8 191.5± 44.4 25.7± 2.3
orb05 10x10 8.6 194.9± 56.0 4.1± 0.7
orb06 10x10 38.5 13.7± 3.3 3.3± 0.7
orb08 10x10 14.7 150.5± 35.6 6.6± 1.7
orb09 10x10 3.4 12.7± 3.1 2.9± 0.6
orb10 10x10 2.7 1.7± 0.4 0.4± 0.1
swv16 50x10 0.1 0.2± 0 0.1± 0
swv17 50x10 0.1 0.2± 0 0.1± 0
swv18 50x10 0.1 0.2± 0 0.1± 0
swv19 50x10 0.2 0.3± 0 0.7± 0.1
swv20 50x10 0.1 0.2± 0 0.1± 0
Total 1070 1277± 145 134± 14.5

7. OR Library Evaluation
In this section we compare the performance ofBrucker,
I-JAR, UB+BR, andUB+BR+V S on instances from the
OR library. As stated in§3.2, all runs were performed on
a 2.4 GHz Pentium IV with 512 MB of memory. First, we
ran Brucker with a time limit of 15 minutes on each of
the 82 instances in the OR library.Brucker proved that it
found the optimal schedule on 47 instances. For each such
instance, we recorded the amount of time that elapsed be-
foreBrucker first evaluated a globally optimal schedule (in
general this is much less than the amount of time required to
provethat the schedule is optimal). Then for each of these
47 instances, we ranI-JAR, UB+BR, andUB+BR+V S
50 times each, continuing each run until it found a globally
optimal schedule. Table 2 presents the mean run lengths
for Brucker, I-JAR, andUB+BR. The performance of
UB+BR+V S was about a factor 1.5 worse than that of
UB+BR on most instances, and is not shown.

Averaged over these 47 instances, the performance of
UB+BR is approximately 9.5 times better than that of
I-JAR , 8 times better than that ofBrucker, and 1.5 times
better than that ofUB+BR+V S (not shown). We conjec-
ture that the advantages ofUB+BR andUB+BR+V S over
Brucker and I-JAR would increase if we ran them on
larger instances from the OR library.

8. Related Work
In this section we discuss previous hybrids of local and sys-
tematic search, and indicate the relationship between our
techniques and previous work.

8.1. Local Search over Partial Assignments
A number of algorithms have been proposed in which a lo-
cal search is performed on partial assignments (i.e., assign-
ments of values to a subset of the problem variables), where
for each partial assignment, the unassigned variables are as-
signed values using a systematic search. An early example
is the shifting bottleneck algorithm for job shop scheduling
(Adams, Balas, & Zawack 1988), in which the partial as-
signment includes a full set of disjunctive arcs for all ma-
chines except one. More recently, Büdenbender et al. (2000)
apply a technique of this form to a transportation network
design problem. Focacci et al. (2003) give a survey of in-
stances of this general technique.

A related but distinct approach is to use local search to
find the largest possibleconsistentpartial assignment (i.e.,
a partial assignment that cannot be trivially pruned due to
lower bounds or constraint violations). Instances of this
approach include the constraint satisfaction algorithm of
Zhang and Zhang (1996) and that of Prestwich (2002).

8.2. Local Search Probing
A number of recent papers have used local search “probes”
to guide chronological backtracking. For each node in the
search tree, a local search is performed on the subproblem
defined by that node. Information from the local search is
then used for variable and value selection.

Kamarainen and Sakkout (2002) apply this approach to
the kernel resource feasibility problem. At each search tree
node, they relax the subproblem by removing resource con-
straints, then solve the relaxed problem with local search.
A resource constraint that is violated by the solution to the
relaxation forms the basis for further branching. Nareyek
et al. (2003) use a similar approach to solve the decision
version of the JSP (the decision version asks whether a
schedule with makespan≤ k exists). They perform a local
search on each subproblem, and branch by examining a
constraint that is frequently violated by local search.

8.3. Discussion
Our upper bounding technique (using upper bounds from
an incomplete search to reduce the work that must be per-
formed by a systematic search) has no doubt been used with-
out fanfare many times in practice. Our variable selection
technique is an instance of local search probing. Our branch
ordering heuristic differs from the two techniques just dis-
cussed in that we use an independent run of iterated local
search (i.e., one that explores the entire search space, in-
dependent of the subspace currently being examined by the
backtracking search) as guidance for a backtracking algo-
rithm that remains complete.

9. Future Directions
9.1. Nogood Learning
In this paper we have focused on using information gained
from iterated local search to improve the performance of
branch and bound. But information can flow in the other
direction as well. In particular, once a search tree nodeG
is no longer open (i.e., branch and bound has proved that no
schedule containing all the arcs inG can be optimal) it is
wasteful for iterated local search to explore schedules that
are consistent withG.

Previous work has showed how learned nogoods can be
used to createcompletelocal search algorithms for satisfia-
bility (Fang & Ruml 2004) and job shop scheduling (Dilk-
ina, Duan, & Havens 2005). Both of these approaches use
resolution as a source of nogoods, but could be adapted to
instead use branch and bound.

9.2. Improving BUB+BR

Figure 5 (C) shows that the improvement in accuracy ob-
tained by usingBUB+BR in place ofBBrucker decreases
with depth. It seems that it should be possible to obtain a
more uniform improvement overBBrucker by performing
additional runs ofI-JAR and/or extracting more informa-
tion from the existing run.

10. Conclusions
We have presented three techniques for incorporating it-
erated local search into branch and bound. Iterated local
search can be used to establish upper bounds and to aug-
ment the branching ordering and variable selection heuris-
tics. Empirically, we showed that each of these techniques

reduces the median number of iterations required to find a
globally optimal schedule in a randomN by N JSP in-
stance. AsN increases, each of the three techniques pro-
vides a larger boost in performance.

References
Adams, J.; Balas, E.; and Zawack, D. 1988. The shifting
bottleneck procedure for job shop scheduling.Manage-
ment Science34(3):391–401.
Brinkkötter, W., and Brucker, P. 2001. Solving open in-
stances for the job-shop problem by parallel head-tail ad-
justments.Journal of Scheduling4:53–64.
Brucker, P.; Jurisch, B.; and Sievers, B. 1992.
Job-shop (C-codes). European Journal of Oper-
ational Research 57:132–133. Code available at
http://optimierung.mathematik.uni-kl.
de/ORSEP/contents.html .
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics49(1-3):107–127.
Büdenbender, K.; Grünert, T.; and Sebastian, H.-J. 2000. A
hybrid tabu search/branch-and-bound algorithm for the di-
rect flight network design problem.Transportation Science
34(4):364–380.
Dilkina, B.; Duan, L.; and Havens, W. 2005. Extending
Systematic Local Search for Job Shop Scheduling Prob-
lems. InEleventh International Conference on Principles
and Practice of Constraint Programming.
Fang, H., and Ruml, W. 2004. Complete local search
for propositional satisfiability. InProceedings of the
Nineteenth National Conference on Artificial Intelligence
(AAAI-04), 161–166.
Fisher, H., and Thompson, G. L. 1963. Probabilistic learn-
ing combinations of local job-shop scheduling rules. In
Muth, J. F., and Thompson, G. L., eds.,Industrial Schedul-
ing. Englewood Cliffs, NJ: Prentice-Hall. 225–251.
Focacci, F.; Laburthe, F.; and Lodi, A. 2003. Local search
and constraint programming. In Glover, F., and Kochen-
berger, G. A., eds.,Handbook of Metaheuristics. Boston,
MA: Kluwer. 369–404.
Ginsberg, M. L., and McAllester, D. A. 1994. GSAT
and Dynamic Backtracking. In Torasso, P.; Doyle, J.;
and Sandewall, E., eds.,Proceedings of the 4th Interna-
tional Conference on Principles of Knowledge Representa-
tion and Reasoning, 226–237. Morgan Kaufmann.
Ginsberg, M. L. 1993. Dynamic backtracking.Journal of
Artificial Intelligence Research1:25–46.
Gomes, C. 2003. Complete randomized backtrack search.
In Milano, M., ed.,Constraint and Integer Programming:
Toward a Unified Methodology. Boston, MA: Kluwer.
233–283.
Harvey, W. D., and Ginsberg, M. L. 1995. Limited dis-
crepancy search. In Mellish, C. S., ed.,Proceedings of the
Fourteenth International Joint Conference on Artificial In-
telligence (IJCAI-95); Vol. 1, 607–615. Montŕeal, Qúebec,
Canada: Morgan Kaufmann, 1995.

Kamarainen, O., and Sakkout, H. E. 2002. Local prob-
ing applied to scheduling. InPrinciples and Practice of
Constraint Programming, 155–171.
Mattfeld, D. C.; Bierwirth, C.; and Kopfer, H. 1999. A
search space analysis of the job shop scheduling problem.
Annals of Operations Research86:441–453.
Nareyek, A.; Smith, S.; and Ohler, C. 2003. Integrating lo-
cal search advice into a refinment search solver (or not). In
Proceedings of the CP-03 Workshop on Cooperative Con-
straint Problem Solvers, 29–43.
Nowicki, E., and Smutnicki, C. 2001. Some new ideas
in TS for job shop scheduling. Technical Report 50/2001,
University of Wroclaw.
Prestwich, S. 2002. Combining the scalability of local
search with the pruning techniques of systematic search.
Annals of Operations Research115:51–72.
Roy, B., and Sussmann, B. 1964. Les problèmes dordon-
nancement avec contraintes disjonctives. Note D.S. no. 9
bis, SEMA, Paris, France, D́ecembre.
Streeter, M. J., and Smith, S. F. 2005. Characterizing
the distribution of low-makespan schedules in the job shop
scheduling problem. InProceedings of the Fifteenth Inter-
national Conference on Automated Planning and Schedul-
ing (ICAPS 2005), 61–70.
Taillard, E. 1994. Parallel taboo search techniques for the
job shop scheduling problem.ORSA Journal on Computing
6:108–117.
van Laarhoven, P.; Aarts, E.; and Lenstra, J. 1992. Job shop
scheduling by simulated annealing.Operations Research
40(1):113–125.
Walsh, T. 1997. Depth-bounded discrepancy search. In
IJCAI, 1388–1395.
Watson, J.-P.; Howe, A. E.; and Whitley, L. D. 2003a. An
analysis of iterated local search for job shop scheduling. In
Proceedings of the Fifth Metaheuristics International Con-
ference.
Watson, J.-P.; Whitley, L. D.; and Howe, A. E. 2003b. A
dynamic model of tabu search for the job shop scheduling
problem. InMultidisciplinary International Conference on
Scheduling.
Zhang, J., and Zhang, H. 1996. Combining local search
and backtracking techniques for constraint satisfaction. In
Proceedings of the Thirteenth National Conference on Ar-
tificial Intelligence (AAAI 1996), 369–374.

