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Abstract

We characterize the search landscape of the job shop
scheduling problem (JSSP), with a focus on schedules
whose makespan is optimal or near-optimal. Building
on previous work on the ‘big valley’ distribution of lo-
cal optima, we use special branch and bound algorithms
to examine in greater detail the extent to which JSSP
search spaces conform to the intuitive picture conveyed
by the words ‘big valley’. We also examine how this
changes as a function of the job:machine ratio. We
find that for square JSSPs, low-makespan schedules are
tightly clustered in a small region of the search space,
and the size of this region decreases as the makespan
gets closer to optimality. As the job:machine ratio in-
creases beyond 1, however, low-makespan schedules
become dispersed throughout the search space. We dis-
cuss the reasons for this and provide analytical results
for two limiting cases. We close with an examination
of neighborhood exactness in the JSSP, which illustrates
some limitations of the big valley picture for JSSP land-
scapes.

1. Introduction
1.1. Motivations
Local search algorithms (e.g., taboo search (Glover & La-
guna 1997; Nowicki & Smutnicki 1996), iterated local
search (Lourenço, Martin, & Stützle 2003)) are among the
most effective approaches for solving the job shop schedul-
ing problem (Jain & Meeran 1998; Jones & Rabelo 1998).
Such algorithms traverse the search space from point to
point, employing a bias designed to move them toward op-
timal or near-optimal schedules. Clearly, the algorithms
that have proven the most effective are those whose bias
is in some sense well-matched to the unique and special
structure of the JSSP. In some cases, algorithm design de-
cisions have been explicitly motivated by observed search
space properties. For example, Nowicki and Smutnicki
motivate the use ofpath relinking in their i-TSAB algo-
rithm by citing evidence that the JSSP has a ‘big valley’
distribution of local optima (Nowicki & Smutnicki 2001;
2002). The picture of the search space given in this paper
is much richer than that provided by studies of the ‘big val-
ley’ distribution, and we hope that it too will prove valuable
in guiding the design of search algorithms for the JSSP.

In this paper, we will focus on characterizing howop-
timal or near-optimalschedules are distributed in random
instances of the JSSP. Though near-optimal schedules repre-
sent only a vanishingly small portion of the search space, our
focus on them makes sense because these are the schedules
one wants to find. We do expect such a characterization to be
prescriptive with regard to search algorithm design. For ex-
ample, if near-optimal schedules are found in a single cluster
whose centroid is close to the centroid of globally optimal
schedules, one might expect that starting a local search algo-
rithm from a schedule that lies along the path between two
near-optimal schedules (as is done ini-TSAB) would gen-
erate better results than would be obtained using a random
starting point. On the other hand, if near-optimal schedules
are dispersed throughout the search space and their centroid
is not particularly close to any global optimum, this might
be less effective.

1.2. Contributions

The contributions of this paper are twofold. First, we intro-
duce techniques that could be usefully applied to the analysis
of other scheduling problems such as permutation flow shop
or project scheduling, as well as other combinatorial prob-
lems. Second, we make use of these techniques to obtain
insights into the job shop scheduling problem.

With regard to techniques, we present two ways to use
branch and bound algorithms to compute search space statis-
tics that otherwise could not be computed tractably. First,
we show how to calculate the number of attributes common
to all schedules whose makespan does not exceed a given
threshold by using multiple runs of branch and bound. Sec-
ond, we use branch and bound to efficiently find the best
schedule within a fixed hamming radius of a given center
schedule, and show how this can be used to quantitatively
measure the ‘ruggedness’ of the landscape.

In terms of insights into the job shop scheduling problem,
the most significant results of our analysis are listed below.

• Empirically, we demonstrate that for low job:machine ra-
tios, low-makespan schedules are clustered in a small re-
gion of the search space and many attributes (i.e., di-
rected disjunctive graph edges) are common to all low-
makespan schedules. As the job:machine ratio increases,
low-makespan schedules become dispersed throughout



the search space and there are no attributes common to
all low-makespan schedules.

• For two limiting cases we derive analytical results. We
prove that as the job:machine ratio approaches 0, all glob-
ally optimal schedules will have a common orientation of
a randomly selected disjunctive edge with probability ap-
proaching 1. As the job:machine ratio approaches∞ this
happens with probability approaching 0.

• We present the first formalization of the concept of a
‘big valley’ distribution, give techniques for quantitatively
measuring the degree to which a search landscape has
such a distribution, and apply these techniques to the
JSSP. We find that the search landscape for random square
JSSPs can indeed be thought of as a single ‘big valley’,
but that this requires taking a very coarse-grained view of
the landscape.

Our work is suggestive with regard to understanding
average-case difficulty of random JSSP instances as a func-
tion of their job:machine ratio, particularly in light of the
conventional wisdom that square JSSPs are more difficult
than rectangular ones (Fisher & Thompson 1963). For the
purposes of this paper, however, we only attempt to describe
the search space, and do not relate this description to in-
stance difficulty seen by particular algorithms.

2. Related Work
There are at least three threads of research that have con-
ducted search space analyses related to the ones we conduct
here. These include literature on the ‘big valley’ distribution
common to a number of combinatorial optimization prob-
lems, studies of backbone size in boolean satisfiability, and
a statistical mechanical analysis of the TSP.

2.1. The Big Valley
The term ‘big valley’ originated in a paper by Boese et al.
(1994) that examined the distribution of local optima in the
Traveling Salesman Problem (TSP). Based on a sample of
local optima obtained by next-descent starting from random
TSP tours, Boese calculated two correlations:

1. the correlation between the cost of a locally optimal tour
and its average distance to other locally optimal tours, and

2. the correlation between the cost of a locally optimal tour
and the distance from that tour to the best tour in the sam-
ple.

The distance between two TSP tours was defined as the
total number of edges minus the number of edges that are
common to the two tours. Based on the fact that both of
these correlations were surprisingly high, and the fact that
the mean distance between random local optima was small
relative to the mean distance between random tours, Boese
conjectured that local optima in the TSP are arranged in a
‘big valley’. The term does not have a formal definition, but
intuitively it means that if the search space could be locally
smoothed in some manner it would then have a single basin
of attraction with respect to common TSP move operators
such as Lin 2-opt.

Boese’s analysis has been applied to other combinato-
rial problems (Kim & Moon 2004), including the permu-
tation flow shop scheduling problem (Watsonet al. 2002;
Reeves & Yamada 1998) and the job shop scheduling prob-
lem (Nowicki & Smutnicki 2001). Correlations observed
for the job shop problem are generally weaker than those
observed for the TSP.

2.2. Backbone Size
The backboneof a problem instance is the set of attributes
common to all globally optimal solutions of that instance.
For example, in the boolean satisfiability problem (SAT), the
backbone is the set of variable assignments that are com-
mon to all satisfying assignments. In the JSSP, the back-
bone could be defined as the number of disjunctive edges
(described in§3.1) that have a common orientation in all
globally optimal schedules. Backbone size is relevant to our
work in that it is the leftmost data point on each of the graphs
in figures 1 and 2.

There is a large literature on backbones in combinatorial
optimization problems, including many empirical and ana-
lytical results (Slaney & Walsh 2001; Monassonet al. 1999).
In an analysis of problem difficulty in the JSSP, Watson et
al. (2001) present histograms of backbone size for random
6x6 (6 job, 6 machine) and 6x4 (6 job, 4 machine) JSSP
instances. Summarizing experiments not reported in their
paper, Watson et al. note that “[F]or [job:machine ratios]
> 1.5, the bias toward small backbones becomes more pro-
nounced, while for ratios< 1, the bias toward larger back-
bones is further magnified.”§4 generalizes these observa-
tions and proves two theorems that gives insight into why
this phenomenon occurs.

2.3. Statistical Mechanical Analyses
A large and growing literature applies techniques from sta-
tistical mechanics to the analysis of combinatorial optimiza-
tion problems (Martin, Monasson, & Zecchina 2001). At
least one result obtained in this literature concerns cluster-
ing of low-cost solutions. In a study of the TSP, Mézard
and Parisi (1986) obtain an expression for the expected over-
lap (number of common edges) between random TSP tours
drawn from a Boltzmann distribution. They show that as the
temperature parameter of the Boltzmann distribution is low-
ered (placing more probability mass on low-cost TSP tours),
expected overlap approaches 100%. Though we do not use
a Boltzmann weighting,§5 of this paper examines how ex-
pected overlap between random JSSP schedules changes as
more probability mass is placed on low-makespan sched-
ules.

3. The Job Shop Scheduling Problem
3.1. Problem Definition
An instance of the job shop scheduling problem consists of
N jobs andM machines, where each of the jobs is a se-
quence ofM operations (exactly one per machine) that must
be performed in a certain order. Each operationo has an as-
sociated durationτ(o). A schedule assigns start times to
each operation such that



1. no machine is scheduled to process more than one opera-
tion at the same time, and

2. the ordering of operations in each job is respected.

The makespanof a schedule is equal to the maximum
completion time (i.e., start time plus duration) of any op-
eration. We consider the makespan-minimization version of
the job shop scheduling problem, in which the objective is
to find a schedule that minimizes the makespan.

It is convenient to represent a schedule in terms of itsdis-
junctive graph(Roy & Sussmann 1964). In a disjunctive
graph, there is a vertex corresponding to each operation in
the problem instance, as well as two special vertices called
the sourceand thesink. There are directed edges pointing
from the source into (the vertex corresponding to) the first
operation of each job, from the last operation of each job
into the sink, and from each operation into the next opera-
tion (if any) in the job. A directed edge from operationo1

to operationo2 indicates thato1 completes beforeo2 starts.
The orientation of all the edges just discussed is dictated by
the problem instance, and these edges are calledconjunctive
edges. The remaining edges connect fixed pairs of opera-
tions, but their orientation is defined by a particular sched-
ule. Thesedisjunctive edgesconnect all pairs of operations
performed on the same machine. Once the orientation of all
edges is specified, the weight of each edge is given by the
duration of the operation that the edge points out of (or zero
if the edge points out of the source). It can be shown that
the makespan of the schedule is equal to the length of the
longest weighted path from the source to the sink.

In this way, the job shop scheduling problem can be
rephrased as a task of specifying a binary orientation for
each ofM

(
N
2

)
disjunctive edges.

3.2. Distance between schedules
We define the distance between two schedules as the num-
ber of disjunctive edges that are oriented in opposite direc-
tions in the two schedules. Unless otherwise noted we will
normalize the distance by dividing by the total number of
disjunctive edges (Mattfeld, Bierwirth, & Kopfer 1999).

3.3. Random Instances
Definition (Random JSSP instance).A randomN by M
instance of the JSSP is an instance withN jobs andM
machines, where the order in which the machines appear
in each job is a random permutation of{1, 2, ...,M} and
where the durations of each operation are drawn indepen-
dently from a distribution with finite meanµ and finite vari-
anceσ2.

We choose operation durations from a uniform distribu-
tion over{1, 2, ..., 100} for the experiments described in this
paper.

4. Number of Common Attributes as a
Function of Makespan

In this section we consider schedules whose makespan is
within a certain factorρ of optimality, and look at the frac-
tion of disjunctive edges that will have the same orientation

in all such schedules. We will make use of the following
definition (a related definition is used in (Slaney & Walsh
2001)).

Definition (ρ-backbone). The ρ-backbone of a JSSP in-
stance is the set of disjunctive edges that have a common
orientation in all schedules whose makespan is at mostρ
times the optimal makespan.

In this section we examine the expected value of|ρ-
backbone| as a function ofρ for randomN by M JSSP in-
stances. We specifically examine how the shape of this curve
changes as we changeNM . To do this we must compute|ρ-
backbone| for all ρ for an arbitrary JSSP instance. We do
this by performing a separate run of branch and bound as-
sociated with each possible orientation of each disjunctive
edge.

4.1. Methodology
Let opt(o1, o2) denote the optimal makespan among all
schedules in which operationo1 is performed before oper-
ation o2, whereo1 ando2 are operations performed on the
same machine. In branch and bound algorithms for the JSSP,
nodes in the search tree represent choices of orientations for
a subset of the disjunctive edges. Thus, by constructing a
root search tree node that has an edge pointing fromo1 into
o2, we can determineopt(o1, o2) using existing branch and
bound algorithms. We use an algorithm due to Brucker et al.
(1994) because it is efficient and because the code for it is
freely available via ORSEP.

Suppose we are interested in all schedules whose
makespan is at mostt = ρ · opt makespan, where
opt makespan is the optimum makespan for the given
instance. Consider a pair of operationso1 and o2, per-
formed on the same machine. It must be the case
that min(opt(o1, o2), opt(o2, o1)) = opt makespan, be-
cause any globally optimal schedule must either per-
form o1 before o2 or perform o2 before o1. If t <
max(opt(o1, o2), opt(o2, o1)), then the presence of one of
these two directed edges precludes schedules with makespan
≤ t, so the other edge must be a member of theρ-backbone.
Thus|ρ-backbone| is equal to

∑
o1 6=o2,m(o1)=m(o2)

1
2
[t < max(opt(o1, o2), opt(o2, o1)]

wherem(o) is the machine on which an operationo is
performed, and the [...] notation indicates a function that
returns 1 if the predicate enclosed in the brackets is true, 0
otherwise.

Thus, we can determine|ρ-backbone| for all ρ by
performing enough branch and bound runs to determine
opt(o1, o2) for all pairs of distinct operations performed on
the same machine.

These values can be determined using1 + M
(
N
2

)
runs of

branch and bound. The first branch and bound run is used
to find a globally optimal schedule, which gives the value
of opt for one of the two possible orientations of each of
theM

(
N
2

)
disjunctive edges. A separate branch and bound
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Figure 1: Normalized|ρ-backbone| as a function ofρ for
OR library instance ft10.

run is used to determine the values ofopt for the M
(
N
2

)
alternative orientations.

Figure 1 graphs the fraction of disjunctive edges that be-
long to theρ-backbone as a function ofρ for instance ft10
from the OR library (Beasley 1990). Note that by definition
the curve is non-increasing with respect toρ, and that the
curve is exact for allρ. It is noteworthy that among sched-
ules within 0.5% of optimality, 80% of the disjunctive edges
have a fixed orientation. We will see that this behavior is
typical of square JSSP instances.

4.2. Experiments on Random Instances
We plotted|ρ-backbone| as a function ofρ for all instances
in the OR library having 10 or fewer jobs and 10 or fewer
machines. The results are available online (Streeter & Smith
2005). Inspection of the graphs revealed that the shape of
the curve is largely a function of the job:machine ratio. To
investigate this further, we repeated these experiments on a
large number of randomly generated JSSP instances.

We use randomly-generated instances with 7 different
combinations ofN andM to study instances withNM equal
to 1, 2, or 3. ForNM = 1 we use 6x6, 7x7, and 8x8 instances;
for N

M = 2 we use 8x4 and 10x5 instances; and forN
M = 3

we use 9x3 and 12x4 instances. We generate 1000 random
instances for each combination ofN andM .

Figure 2 presents the expected fraction of edges belonging
to theρ-backbone as a function ofρ for each combination of
N andM , grouped according toNM . For the purposes of
this study the two most important observations about Figure
2 are as follows.

• The curves depend on both the size of the instance (i.e.,
NM ) and the shape (i.e.,NM ). Of these two factors,NM has
by far the stronger influence on the shape of the curves.

• Forall values ofρ, the expected fraction of edges belong-
ing to the|ρ-backbone| decreases asNM increases.
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(B) Job:machine ratio 2:1
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(C) Job:machine ratio 3:1
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Figure 2: Expected fraction of edges inρ-backbone as a
function ofρ for random JSSP instances. Graphs (A), (B),
and (C) depict curves for random instances withN

M = 1, 2,
and 3, respectively.



4.3. Analysis
We now give some insight into Figure 2 by analyzing two
limiting cases. We prove that asNM→0, the expected fraction
of disjunctive edges that belong to the backbone approaches
1, while asN

M→∞ this expected fraction approaches 0.
Intuitively, what happens is as follows. AsNM→0 (i.e.,N

is held constant andM→∞) each of the jobs becomes very
long. Individual disjunctive edges then represent precedence
relations among operations that should be performed very
far apart in time. For example, if there are 10,000 machines
(and so each job consists of 10,000 operations), a disjunctive
edge might specify whether operation 1,200 of jobA is to be
performed before operation 8,500 of jobB. Clearly, waiting
for jobB to complete 8,500 of its operations before allowing
job A to complete 12% of its operations is likely to produce
an inefficient schedule. Thus, orienting a single disjunctive
edge in the ‘wrong’ direction is likely to prevent a schedule
from being optimal, and so any particular edge will likely
have a common orientation in all globally optimal schedules.

In contrast, whenN
M→∞, it is the workloads of the ma-

chines that become very long. The order in which the jobs
are processed on a particular machine does not matter much
as long as the machine with the longest workload is kept
busy, and so the fact that a particular edge is oriented a par-
ticular way cannot prevent a schedule from being optimal.
All of this is formalized below.

We will make use of the following well-known definition
and inequalities.

Definition (w.h.p). A sequence of eventsξn occurs with
high probability (w.h.p) iflimn→∞ P[ξn] = 1.

Bonferroni’s Inequality. P[
⋃n

i=1 Ei] ≤
∑n

i=1 P[Ei],
whereE1, E2, . . . , En are events, andP[

⋃n
i=1 Ei] is the

probability that at least one of these events occurs.

Chebyshev’s Inequality. P[|X − µ| ≥ kσ] ≤ 1
k2 , where

k ≥ 0 andX is a random variable drawn from a distribution
with meanµ and varianceσ2.

Lemma 1 and Theorem 1 show that for constantN , a ran-
domly chosen edge of a randomN by M JSSP instance will
be in the backbone w.h.p (asM→∞). Lemma 2 and Theo-
rem 2 show that for constantM , a randomly chosen edge of
a randomN byM JSSP instance will not be in the backbone
w.h.p (asN→∞). Because the proof of Lemma 2 is some-
what long and technical, we have moved in to Appendix A.

Lemma 1. Let IN,M be a randomN by M JSSP instance.
Let f be an unbounded, increasing function ofM . Then
w.h.p (asM→∞) the optimum makespan ofIN,M does not
exceedMµ + σ

√
Mf(M).

Proof. Let DJ be the sum of the durations of all opera-
tions in job J . From the central limit theorem, eachDJ

has meanMµ and standard deviationσ
√

M . The inequality
max1≤J≤N DJ ≤ Mµ+σ

√
M(f(M)− 1) holds w.h.p (as

can be shown using Chebyshev’s inequality). Thus it suf-
fices to show that w.h.p a schedule exists whose makespan
does not exceed(max1≤J≤N DJ) + σ

√
M .

Let H(o) be the sum of the durations of all operations that
come beforeo in the job thato is part of. Assume without

loss generality that allH(o) are distinct. Let the (infeasible)
scheduleH assign start timeH(o) to each operationo. The
makespan ofH is max1≤J≤N DJ . Let an operationo be
runningat timet under scheduleS (which assigns start times
S(o)) if S(o) ≤ t ≤ S(o) + τ(o) (recall thatτ(o) is o’s
duration). Let an operation̄o be infeasibleunderS if any
operation performed on the same machine asō is running at
time S(ō) underS. Let Ō(S) be the set of operations that
are infeasible underS.

It suffices to show that we can transformH into a fea-
sible schedule while increasing its makespan by an amount
whose expected value does not increase withM . We do this
using an operator calledshift. For any scheduleS, time
t, and increment∆, let shift(S, t,∆) be a schedule iden-
tical to S, except that all operations whose start time was
≥ t have had their start time incremented by∆. Applying
shift cannot create any new infeasible operations. Further-
more, for anyō ∈ Ō(H), applyingshift(H,H(ō),∆(ō))
for sufficiently large∆(ō) creates a schedule in which̄o
is no longer infeasible. It is sufficient to set∆(ō) =
(maxo6=ō,o running atH(ō) H(o) + τ(o)) −H(ō). Iterating

this idea yields a feasible schedulêH with start times given
by

Ĥ(o) ≡ H(o) +
∑

ō infeasible underH; H(ō)≤H(o)

∆(ō) .

Consider the difference between the makespan ofĤ and
that of H. UnderH, there are at mostN concurrent op-
erations at any given time, each one equally likely to be
performed on any of theM machines. Thus the probabil-
ity that a random operationo is infeasible underH cannot
exceedN−1

M by Bonferroni’s inequality. Thus the expected
number of infeasible operations cannot exceedNM N−1

M =
N(N − 1). ThusE[makespan(Ĥ)−makespan(H)] can-
not exceedE[∆]N(N − 1). Using the fact thatσ is finite
it can be shown thatE[∆] does not increase withM . Thus
E[makespan(Ĥ)−makespan(H)] does not increase with
M , as required.

Theorem 1. Let N be constant, letIN,M be a randomN
by M JSSP instance, and lete be a randomly selected dis-
junctive edge ofIN,M . Then w.h.p (asM→∞) e is in the
backbone ofIN,M .

Proof. We show that w.h.p one of the two possible orienta-
tions of e will create a path through the disjunctive graph
with length in excess ofMµ + σ

√
Mlog(M). By Lemma

1, this implies thate is in the backbone ofIN,M w.h.p.
Let e be between vertices corresponding to theith opera-

tion of one job to thejth operation of another, and consider
orientinge so that the operation whose position in its job is
max(i, j) is performed before the operation whose position
is min(i, j). This orientation creates a pathP with weighted
lengthw(P ) that passes through|P | = M +1+max(i, j)−
min(i, j) operations.|P | exceedsM + M

2
3 w.h.p (because

i is not withinM
2
3 operations ofj w.h.p).



If |P | > M + M
2
3 , w(P ) exceedsMµ + σ

√
Mlog(M)

w.h.p. To see this, consider some fixedP , and note that by
the central limit theoremw(P ) has meanµ |P | and standard
deviationσ

√
|P | ≤ σ

√
2M . w(P ) will be within log(M)

standard deviations of its mean w.h.p, and will therefore ex-
ceed(M + M

2
3 )µ− (σ

√
2M) log(M) w.h.p. This quantity

exceedsMµ + σ
√

M log(M) for M sufficiently large.

Lemma 2. LetM be constant and letIN,M be a randomN
byM JSSP instance. Then w.h.p (asN→∞) there exists an
optimal schedule forIN,M with the property that no machine
is idle until all operations performed on that machine have
been completed.

Proof. See appendix A.

Corollary 1. LetM be constant and letIN,M be a random
N by M JSSP instance. LetWm denote the sum of the du-
rations of all operations performed on machinem. Then
w.h.p (asN→∞) the optimum makespan ofIN,M is equal
to max1≤m≤M Wm.

Corollary 1 confirms a conjecture of Taillard (1994).

Theorem 2. Let M be constant, letIN,M be a randomN
by M JSSP instance, and lete be a randomly selected dis-
junctive edge ofIN,M . Then w.h.p (asN→∞) e is not in
the backbone ofIN,M .

Proof. Let e specify that operationo1 is to be performed be-
fore operationo2, whereo1 ando2 are operations performed
on the same machine as part of jobsj1 andj2, respectively.
Removej2 from IN,M to create a new instanceIN−1,M ,
which comes from exactly the same distribution as a fresh
randomN − 1 by M instance. Lemma 2 shows that w.h.p
there exists a schedule forIN−1,M , call it S, such that no
machine is idle until all its operations have finished. It suf-
fices to show that w.h.p we can workj2 into S to create a
schedule that is optimal forIN,M and that performso1 be-
foreo2.

Let Wm denote the workload of machinem (i.e., the
sum of the durations of all operations performed onm) in
IN−1,M . Let mi be the machine with theith highest work-
load. Let ō be the one operation ofj2 that usesm1. The
optimum makespan ofIN,M is at leastWm1 + τ(ō). Let
L be the set of operations with start time≥ Wm2 underS.
Let w(O) denote the sum of the durations of an arbitrary
set of operationsO. All operations inL must be performed
on m1 and must be the last operations of their jobs, so we
can permute the order of operations inL arbitrarily without
changing the makespan or feasibility ofS. If o1 ∈ L we as-
sume without loss of generality thatS(o1) = Wm2 . It then
suffices to show that w.h.p the operations inj2∪(L\o1) can
be scheduled in a window of lengthw(L \ o1) + τ(ō).

It is easy to see that this can always be done if(L \
o1) can be partitioned into two subsets,L1 and L2, such
that w(j2) ≤ w(L1) ≤ w(L2), wherew(j2) is the sum
of the durations of the operations in jobj2. Because
E[w(j2)] = Mµ (a constant), it can be shown that if
w(L) > log(N) such a partitioning exists w.h.p. We have

w(L) = Wm1−Wm2 ≥ mini 6=j

∣∣Wmi −Wmj

∣∣. Asymptot-
ically, eachWmi is normally distributed with meanNµ and
varianceNσ2 (by the central limit theorem). Thus we can
havemini 6=j

∣∣Wmi
−Wmj

∣∣ ≤ log(N) only if two among
theseM normally distributed random variables are within
log(N)

σ
√

N
standard deviations of one another. But this does not

happen w.h.p.

Note that the expected fraction of edges in the backbone
is equal to the probability that a random edge is part of the
backbone by linearity of expectations.

5. Clustering as a Function of Makespan
§4 examined the number of attributes common to all sched-
ules whose makespan is within a factorρ of optimality. In
this section, we examine theexpected distancebetween ran-
dom members of the set of such schedules. Note that the
number of attributes common to a set of schedules pro-
vides an upper bound on the expected distance between ran-
dom schedules in the set (because common attributes can
never contribute to distance). However, it provides no lower
bound. Thus, even though global optima of random in-
stances withN

M = 3 do not share many attributes, they may
still be tightly clustered in the search space. By comput-
ing the expected distance between random schedules drawn
from among the set of schedules within a factorρ of opti-
mality, we can determine whether or not this is the case.

5.1. Methodology
We generate ‘random’ samples from the set of schedules
within a factorρ of optimality by running the simulated an-
nealing algorithm of van Laarhovenet al. (1992) until it
finds such a schedule. More precisely, our procedure for
sampling distances is as follows.

1. Generate a randomN by M JSSP instanceI.

2. Using the branch and bound algorithm of Brucker et al.
(1994), determine the optimal makespan ofI.

3. Perform two runs,R1 andR2, of the van Laarhoven et al.
(1992) simulated annealing algorithm. Restart each run
as many times as necessary for it to find a schedule whose
makespan is optimal.

4. For eachρ in {1, 1.01, 1.02, ..., 2}, find the first schedule,
call it si(ρ), in each runRi whose makespan is within a
factor ρ of optimality. Add the distance betweens1(ρ)
ands2(ρ) to the sample of distances associated withρ.

Note that the distances for different values ofρ are de-
pendent, but that for a givenρ all the sampled distances are
independent, which is all that is necessary for the estimates
to be unbiased. Figure 3 presents the results of running this
procedure on 1000 random JSSP instances for the same 7
combinations ofN andM that were used in§4.2.

From examination of Figure 3, we see that forρ near 1, the
ρ-optimal schedules are in fact dispersed widely throughout
the search space forNM = 3, and that this is true to a lesser
extent for N

M = 2.
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Figure 3: Expected distance between random schedules
within a factorρ of optimality, as a function ofρ. Graphs
(A), (B), and (C) depict curves for random instances with
N
M = 1, 2, and 3, respectively.

An immediate implication of Figure 3 is that whether or
not they exhibit the two correlations that are the operational
definition of a ‘big valley’, typical landscapes for JSSP in-
stances withN

M = 3 cannot be expected to be ‘big valleys’
in the intuitive sense of these words. If anything, one might
posit the existence of multiple ‘big valleys’, each leading to
a separate global optimum. We make use of these observa-
tions in the discussion in§6.4.

6. Neighborhood Exactness
6.1. Motivations
Intuitively, a search landscape can be described by the words
‘big valley’ if, when sufficiently smoothed in some manner,
the search landscape has a single basin of attraction. In this
section, we consider a type of smoothing in which an al-
gorithm performing next-descent is allowed to jump to any
improving schedule within a distancer of its current loca-
tion. We accomplish this smoothing using special branch
and bound algorithms that find the best schedule within a ra-
diusr of an arbitrary schedules. Intuitively, this smoothing
allows next-descent to jump over local irregularities in the
search landscape and explore the landscape more globally.
We examine the probability that a random local optimum
(i.e., a local optimum obtained by applying next-descent to
a random schedule) of a randomN by M JSSP instance will
be globally optimal, as a function ofr. The resulting curve
is a quantitative measure of the degree to which typical land-
scapes of randomN by M JSSP instances can be described
as consisting of one or more ‘big valleys’.

6.2. Methodology
To formalize what we are doing it is helpful to introduce the
following two definitions.

Definition (NeighborhoodNr). LetNr(s) denote the set of
all schedules whose disjunctive graph distance froms (i.e.,
number of disjunctive edges whose orientation differs from
that ins) is at mostr.

Definition (Neighborhood exactness).Let S be a set of
points in a search space, letf : S → < be an objective
function to be minimized, and letN : S → 2S be a neigh-
borhood function. LetP be a probability distribution over
points inS that are locally optimal w.r.t.N . The exactness
of the triple(N ,P, S) is the probability that a random local
optima drawn fromP is globally optimal with respect tof .

Note that the exactness of a neighborhood is 1 if the
neighborhood is exact under the standard definition of this
term (namely, that all local optima are global optima).

For given values ofN andM , we computeexpectedex-
actness ofNr for 1 ≤ r ≤ M

(
N
2

)
by repeatedly executing

the following procedure (which implicitly specifiesP).

1. Generate a randomN by M JSSP instanceI.

2. Using the algorithm of Brucker et al. (1994), compute the
optimal makespan ofI.

3. Let s be a random feasible schedule; letr = 1; and let
opt = false.

4. Whileopt = false do:



(a) Starting froms, apply next-descent under the neigh-
borhoodNr to generate a local optimum (each step of
next-descent uses our radius-limited branch and bound
algorithm). Lets be this local optimum.

(b) Update the expected exactness ofNr appropriately,
based on whether or nots is globally optimal.

(c) If s is globally optimal, setopt = true. Otherwise
incrementr.

5. For allr′ such thatr < r′ ≤ M
(
N
2

)
update the expected

exactness ofNr′ appropriately.
For distinct radii, the estimates of expected exactness

given by this procedure are dependent. However, all data
that contribute to the estimate for a given radius are inde-
pendent. The fact thatr increases gradually does not change
the fact that we are doing next-descent w.r.t each individual
r.

Our radius-limited branch and bound algorithm uses the
branching rule of Balas (1969) combined with the lower
bounds and branch ordering heuristic of Brucker et al.
(1994).

6.3. Results
For this experiment, we use different combinations ofN and
M than were used in§4 and§5. We use combinations with
N
M = 1

5 (3x15, 4x20, and 5x25 instances),N
M = 1 (6x6,

7x7, and 8x8 instances) andNM = 5 (15x3 and 20x4 in-
stances). As before, we generate 1000 random instances for
each combination ofN andM . We use different combi-
nations ofN andM in this section because the trends in
this data are only apparent when using combinations with
N
M < 1 as well as withN

M > 1, and because we found that,
in these experiments, more extreme job:machine ratios were
necessary to bring the trends out clearly.

Figure 4 plots expected exactness as a function of neigh-
borhood radius (normalized by the number of disjunctive
edges) for each of these three job:machine ratios.

6.4. Discussion
When N

M = 1
5 or N

M = 5, only a small amount of smooth-
ing is required before a random local optimum drawn from a
random instance is very likely to be globally optimal. Using
the methodology of§4, we found that the expected back-
bone fractions for 3x15, 4x20, and 5x25 instances are 0.94,
0.93, and 0.92, respectively, while the expected distance be-
tween global optima was 0.02 in all three cases. This sug-
gests that the typical landscape forN

M = 1
5 can be described

as a ‘big valley’. In contrast, the expected backbone frac-
tions for 15x3 and 20x4 instances are near-zero, while the
expected distances between global optima are 0.33 and 0.28,
respectively. Thus forNM = 5, the data suggest the existence
of many ‘big valleys’ rather than just one.

For N
M = 1, normalized radiusr must be much larger

in order to achieve the same expected exactness. The data
from §5 show that global optima are fairly tightly clustered
when N

M = 1, so typical landscapes can still be roughly
described as ‘big valleys’. However, whenNM = 1 the de-
gree of smoothing required to traverse these valleys is much
higher than it is for the more extreme job:machine ratios.
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0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3

Normalized neighborhood radius

E
xp

ec
te

d
 e

xa
ct

n
es

s 15x3 instances

20x4 instances

Figure 4: Expected exactness as a function of normalized
neighborhood radius. Graphs (A), (B), and (C) depict curves
for random instances withNM = 1

5 , 1, and 5, respectively.



7. Limitations
There are two primary limitations of the experiments re-
ported in this paper. First, we have collected statistics about
small, random instances of the job shop scheduling problem.
There is no guarantee that our observations will generalize to
larger instances, or to structured problem instances (Watson
et al. 2002). Second, we examined onlyaggregatebehavior
over ensembles of random instances, rather than behavior of
particular instances. Aside from the restriction on instance
size, none of these limitations are inherent in our approach.

8. Conclusions
Empirically, we have demonstrated that for low job:machine
ratios, low-makespan schedules are clustered in a small re-
gion of the search space and many disjunctive edge orienta-
tions are common to all low-makespan schedules. As the
job:machine ratio increases, low-makespan schedules be-
come dispersed throughout the search space and there are
no edge orientations common to all such schedules. For the
two limiting values of the job:machine ratio (0 and∞) we
proved theorems that give insight into what happens in the
general case. Finally, we examined neighborhood exactness
in the JSSP, and discussed the implications of our results for
the ‘big valley’ picture of JSSP search landscapes.

References
Balas, E. 1969. Machine sequencing via disjunctive
graphs: An implicit enumeration algorithm.Operations
Research17:1–10.
Beasley, J. 1990. OR-library: Distributing test problems
by electronic mail. Journal of the Operational Research
Society41(11):1069–1072.
Boese, K. D.; Kahng, A. B.; and Muddu, S. 1994. A
new adaptive multi-start technique for combinatorial global
optimizations.Operations Research Letters16:101–113.
Brucker, P.; Jurisch, B.; and Sievers, B. 1994. A branch
and bound algorithm for the job-shop scheduling problem.
Discrete Applied Mathematics49(1-3):107–127.
Fisher, H., and Thompson, G. L. 1963. Probabilistic learn-
ing combinations of local job-shop scheduling rules. In
Muth, J. F., and Thompson, G. L., eds.,Industrial Schedul-
ing. Englewood Cliffs, NJ: Prentice-Hall. 225–251.
Glover, F., and Laguna, M. 1997.Tabu Search. Boston,
MA: Kluwer Academic Publishers.
Jain, A., and Meeran, S. 1998. A state-of-the-art review
of job-shop scheduling techniques. Technical report, De-
partment of Applied Physics, Electronic and Mechanical
Engineering, University of Dundee, Dundee, Scotland.
Jones, A., and Rabelo, L. C. 1998. Survey of job shop
scheduling techniques. Technical report, National Institute
of Standards and Technology, Gaithersburg, MD.
Kim, Y.-H., and Moon, B.-R. 2004. Investigation of the
fitness landscapes in graph bipartitioning: An empirical
study.Journal of Heuristics10:111–133.
Lourenço, H.; Martin, O.; and Stützle, T. 2003. Iterated
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Appendix A: Proof of Lemma 2
We adopt the following notation. WhereI is a JSSP in-
stance,S is a schedule forI, ando is an operation inI,
• est(o) ≡ the start time assigned too by S

• ect(o) ≡ est(o) + τ(o)
• J (o) ≡ the operation performed just beforeo in o’s job

• M(o) ≡ the operation performed just beforeo ono’s ma-
chine.
The choice ofI andS will be apparent from context. We

make use of the following well-known inequality.
Chernoff Bounds. Let X be the sum of a set of indepen-
dent, identically distributed (i.i.d) indicator variables (i.e.,
variables that always take on values in{0, 1}). Then for
0 < β ≤ 1,

P[|X − µ| ≥ βµ] ≤ e
−β2µ

3

Lemma 2. LetM be constant and letIN,M be a randomN
byM JSSP instance. Then w.h.p (asN→∞) there exists an
optimal schedule forIN,M with the property that no machine
is idle until all operations performed on that machine have
been completed.

Proof. Let π be an random permutation of the jobs ofIN,M .
Associate with each machinem a set ofM queues, desig-
natedqm,i for 1 ≤ i ≤ M . Let queueqm,i contain all op-
erations performed on machinem as part of jobs whoseith

machine ism, with the operations listed in the order given
by π. Let the scheduleS specify that each machinem pro-
cesses operations in the order given by the queues, starting
with qm,1 and proceeding up toqm,M . We show that w.h.p
S has the property described in the statement of the lemma.

We must first introduce two concepts. Let an operationo
bedelayedif M(o) exists andest(o) 6= ect(M(o)). Let an
operationo be anearliest delayed operationif o is delayed,
and no operations with start time less than that ofo are de-
layed. We now show that the probability that a randomly
selected operation is an earliest delayed operation decreases
exponentially withN .

Let o be a randomly selected operation, performed on
machinem as part of a jobJ . Let m be thei th machine
used inJ , and letαN jobs come beforeJ in π. Assume
thatM(o) exists, and thati > 1 soJ (o) also exists (oth-
erwise o is delayed with probability 0). Further assume
that no operations with start time earlier than that ofo are
delayed (otherwiseo is an earliest delayed operation with
probability 0). Under these assumptions,o is delayed iff.
ect(J (o)) > ect(M(o)). Additionally, ect(M(o)) is equal
to the sum of the durations of ∑

1≤j≤i−1

|qm,j |

 + |{ō : ō precedeso in qm,i}| (1)

operations. Similarly,ect(J (o)) is equal to the sum of ∑
1≤j≤i−2

|qm′,j |

+|{ō : ō precedesJ (o) in qm′,i−1}|+1

(2)

operation durations, whereJ (o) is performed on machine
m′.

Let s andq denote the first and second terms of (1), re-
spectively, whiles′ andq′ denote the corresponding terms
of (2) (we will ignore the+1 term in (2)). We want to bound
the probability thats+q−s′−q′ < N

2M . We do this by com-
puting separate bounds on the probability thats− s′ ≤ 3N

4M

and the probability thatq′ − q ≥ N
4M .

First consider the probability thatq′ − q ≥ N
4M . Both

q′ andq cannot exceedαN , so if α < 1
4M this probability

is 0. Assumeα ≥ 1
4M . Either q′ or q can be viewed as

the sum ofαN i.i.d. zero-one indicator variablesIn, where
1 ≤ n ≤ αN . (In the case ofq, In equals 1 iff. thenth job
in π usesm as itsith machine.)E[q] = E[q’] = αN

M , and we
can apply Chernoff bounds withβ = 1

8 to obtain

P[|q − E[q]| ≥ αN

8M
] ≤ e

−αN
192M (3)

and a similar inequality forq′. By Bonferroni’s inequality
and the fact thatα ≤ 1, the probability thatq′ − q ≥ N

4M
cannot exceed twice the right hand side of (3). By our as-

sumption thatα ≥ 1
4M , this cannot exceed2e

−N

768M2 .

Similarly, E[s] = N (i−1)
M andE[s′] = N (i−2)

M , soE[s-s′]
= N

M for i > 1. Again we can use Chernoff bounds to bound
the probability thats − s′ ≤ 3N

4M . Putting these bounds to-
gether using Bonferroni’s inequality, we find that the proba-
bility that s + q − s′ − q′ < N

2M is at mostU , where

U = 2
(
e

−N

192M3 + e
−N

768M2

)
. (4)

Assume fixeds, q, s′ andq′, with s + q − s′ − q′ ≥ N
2M .

Each operation belongs to just one queue, so its duration
contributes to at most one of the variables in{s, q, s′, q′}.
Thusect(M(o)) andect(J (o)) are independent sums of the
durations ofs+q ands′+q′ random operations, respectively.
By the central limit theorem,ect(M(o)) is Gaussian with
meanµ(s + q) and variance(s + q)σ2, while ect(J (o))
is Gaussian with meanµ(s′ + q′) and variance(s′ + q′)σ2.
ThusE[ect(M(o))−ect(J (o))] is at leastµN

2M . Both(s+q)
and(s′ + q′) are at mostN , so the standard deviations of
ect(M(o)) andect(J (o)) are at mostσ

√
N .

Thus, ect(M(o)) will be ≥ ect(J (o)) so long as both

ect(M(o)) andect(J (o)) are no more thanµ
√

N
σ4M standard

deviations below and above, respectively, their means. Each
of these variables falls more thank standard deviations be-
low (above) its mean with probability12 −Φ(k), whereΦ is
the normal distribution function. The expression1

2 − Φ(k)

is O(e
−k2

2 ). Putting these facts together, the probability that

ect(M(o)) < ect(J (o)) is bounded byU + 1
2 − Φ(µ

√
N

σ4M ),
which decreases exponentially withN .

Again using Bonferroni’s inequality, the probability that
anyof theNM operations is an earliest delayed operation is

at mostNM(U + 1
2 − Φ(µ

√
N

σ4M )). ThusS has the property
described in the statement of the lemma w.h.p.


