

The Root Causes of Code Growth
in Genetic Programming

Matthew J. Streeter

Genetic Programming, Inc.
mjs@tmolp.com

ABSTRACT

This paper discusses the underlying pressures responsible for code growth
in genetic programming, and shows how an understanding of these
pressures can be used to use to eliminate code growth while simultaneously
improving performance. We begin with a discussion of two distinct
components of code growth and the extent to which each component is
relevant in practice. We then define the concept of resilience in GP trees,
and show that the buildup of resilience is essential for code growth. We
present simple modifications to the selection procedures used by GP that
eliminate bloat without hurting performance. Finally, we show that
eliminating bloat can improve the performance of genetic programming by a
factor that increases as the problem is scaled in difficulty.

1 Introduction

The problem of code growth in genetic programming is well documented [2,6-7,11-
13]. In addition to making successive generations take longer and making the solutions
produced by GP be larger than is necessary, it has been speculated that this growth
essentially prevents long runs from being effective and limits the scalability of genetic
programming [6]. For these reasons, there has been much research in the GP
community both on theoretical explanations of code growth and on practical measures
to prevent it. This paper seeks to provide a starting point for addressing both of these
concerns. We provide evidence that code growth is indeed a protective mechanism,
but that the means by which this protection may be achieved are more complex than
those that have previously been hypothesized. We also show that simple changes to
the selection scheme that are motivated by our investigation can actually eliminate
code growth. Further, we show that eliminating code growth in this way leads to an
improvement in performance by a factor that increases as the problem is scaled up.
 Section 1.1 defines the terms used in this paper. Section 1.2 reviews existing
theories of code growth. Section 1.3 discusses the problems and methodology. Section
2 describes two distinct components of code growth. Section 3 introduces the concept
of resilience of program trees and presents an empirical study of resilience. Section 4
shows that the phenomenon of code growth requires phenotypically near-neutral
crossovers. Section 5 discusses the effects of removing code growth on scalability.
Section 6 is the conclusion.

1.1 Terminology and Background
In this paper we will define an intron as a subtree that can be deleted (i.e. replaced
with a constant terminal) without changing the behavior of the overall program. For
example, in the tree (+ (* X X) (- X X)), the subtree (- X X) would be an intron.
Inviable code is code belonging to a subtree that can be replaced by any other subtree
without changing the behavior of the overall program, e.g. (* (- X X) <inviable>). A

neutral crossover is a crossover that produces a child whose behavior is identical to
that of the receiving parent, while a crossover is disruptive to the extent that it
produces a large change in behavior. We will use the terms code growth and bloat
interchangeably.
 In analyzing code growth it will also be useful to define several distinct
populations. The child population c(n) is just the set of individuals that are members
of generation n (i.e. what is usually called the "population"). The parent population
p(n) consists of N copies of each individual that participates N times as a parent of a
member of c(n). The grandparent population g(n) consists of N copies of each
individual that participates N times as a parent of a member of c(n) who wins at least
one tournament. We define pr(n) and gr(n) to be the subsets of p(n) and g(n)
containing only those individuals that participated as receiving parents in a crossover,
and pd(n) and gd(n) to be the subsets containing only donor parents. We will use
absolute value bars to denote the average size of the individuals in a population, e.g.
|c(0)| indicates the average size of the individuals in generation 0.
 Most explanations of code growth make the assumption that a child which is the
result of a neutral or near-neutral crossover will in general be more likely to be fit than
a child that results from a more disruptive crossover. The reason for this assumption is
that it has been empirically shown that, once an evolutionary run has progressed
beyond the first few generations, the vast majority of crossovers will produce offspring
that are less fit than their parents [10]. Thus, children that are similar to their parents
(who must be relatively fit in order to become parents) will be at advantage relative the
majority of the offspring population.

1.2 Existing Theories of Code Growth
At the time of this writing there are four major theories of code growth, which we
summarize in roughly the order they were originally proposed.

The Intron Theory: Perhaps the earliest theory of code growth concerns what in this
paper is termed inviable code [1,8,9]. This theory is motivated by the idea that, since
the majority of crossovers are destructive, individuals structured in such a way that
they are likely to undergo neutral crossovers will be at an advantage relative to equally
fit individuals which are not similarly structured. Trees with large amounts of inviable
code are more likely to undergo a neutral crossover when selected as receiving parents,
since any subtree inserted into the inviable code will have no affect on the program's
behavior. Thus, the accumulation of larger and larger amounts of inviable code as a
defense against crossover and mutation is a possible cause of code growth.

The Diffusion Theory: Langdon [3-5] has observed that for many problems the
proportion of trees having a given fitness is constant as a function of size so long as the
size exceeds some critical threshold. It follows that the absolute number of trees
having a given fitness increases as a function of size in the same way as the total
number of trees (i.e. exponentially in general). Based on this he has proposed a
general explanation of bloat, which is that "any stochastic search technique … will tend
to find the most common programs in the search space of the current best fitness" [4]
and due to the properties mentioned above these most common programs are large.

The Theory of Removal Bias: Building on the observation that the children of an
inviable node are always inviable, while the parents are not necessarily so, Soule has
proven that inviable nodes on average occur deeper in trees than do nodes as a whole
[11]. Thus, a crossover that is neutral due to removal of an inviable subtree will tend to
remove a relatively small tree, but will insert in its place a tree of average size, so that
children produced through neutral crossovers (which due to the generally destructive

nature of crossover will tend to be relatively fit) will tend to be larger than their
parents, leading to an overall pattern of growth.

The Depth-Correlation Theory: Luke [6,7] has presented a two-part theory involving
the relationship between the depth at which crossover occurs and the change in
behavior that crossover produces in the offspring. Across a variety of problem
domains, Luke has shown that there is a correlation between the depth at which the
subtree removed by crossover occurs in the larger overall tree and the degree to which
the child program's behavior is different from that of the receiving parent, with deeper
removed subtrees corresponding to smaller changes in behavior. This suggests two
mechanisms that may contribute to code growth. First, since fit children tend to be the
result of crossovers that are relatively non-disruptive, they will tend to be the offspring
of receiving parents in whom a deep crossover point was selected, but there will be no
corresponding bias toward deep crossover points in the donor parent, thus tending to
make fit children larger than their parents. Note that this part of the theory predicts the
same phenomenon as removal bias, but assigns it a more general cause. The second
part of the theory simply notes that, as receiving parents, larger trees will on average
have subtrees removed at deeper points (and due to the correlation will therefore
typically produce offspring less different from themselves), thus making size in itself a
defense against genetic operators such as crossover and mutation.
1.3 Problems and Methodology
The problems studied in this paper lie in the symbolic regression domain, and use
target functions that are polynomials of the form x+x2+...+xn. Such problems have
previously been studied in connection with code growth by Langdon [4]. Fitness cases
consist of 101 points uniformly spaced over the interval [0,1]. The function set is {+,-
,%,*}, where % is a protected division operator that returns 1.0 upon division by zero,
and the terminal set is {X, ℜ}, where ℜ denotes the random numeric terminal.
Tournament selection is used with a tournament size of 3. Population size is 1000.
Unless otherwise noted, we use 100% crossover, a depth limit of 17, and a size limit of
500 points.

2 Components of Code Growth

Code growth occurs when the children in successive generations are consistently larger
than the children in previous generations, i.e. |c(n+1)|>|c(n)|. It is known that
crossover alone cannot increase the expected size of individuals in a population, so that
on average |p(n)|=|c(n)|. It is also true on average that |p(n)|=|pr(n)|=|pd(n)|, since
receiving and donor parents are selected in the same way. This means that the growth
|c(n+1)|-|c(n)| that occurs at generation n is on average equal to |pr(n+1)|-|pr(n)|.
 Recalling that gr(n) is the subset of the receiving parents pr(n) whose children win
at least one tournament ("the grandparent population"), we can write the difference
|pr(n+1)|-|pr(n)|, as the sum of two terms: |pr(n+1)|-|gr(n)| and |gr(n)|-|pr(n)|. The first
term measures the extent to which the fit children (i.e. those who win tournaments) are
larger than their parents, while the second term measures the extent to which the
parents of fit children are larger than parents as a whole. By arguing that fit children
will tend to be larger than their parents, both the theory of removal bias and the first
part of the depth-correlation theory predict that the first term will be positive. By
arguing that larger parents will be more likely to produce fit children, both the intron
theory and the second part of the depth-correlation theory predict that the second term
will be positive. Thus, by explicitly tracking the values of these two terms in an actual
run, we can determine to what extent each of these two types of theories has the
potential to explain code growth.

 We tracked the values of these two terms over two sets of 20 runs of the degree 9
polynomial problem. The first set of runs used no size or depth limits and a run length
of 50 generations, while the second set used a depth limit of 17 and run length of 300
generations. When running with depth limits, we use one-offspring crossover and
retry the selection of both crossover points when the depth limits would be violated (in
this case |c(n)|<|p(n)| on average). Figures 1 and 2 show the average sizes of c(n),
pr(n), and gr(n) for 5 typical generations from each set of runs. For the runs with no
depth limits, the average value of the term |p(n+1)|-|g(n)| was 7.60 and the average
value of the term |g(n)|-|p(n)| was 12.5. Thus, for this problem it is reasonable to say
that 37.9% of the growth was attributable to fit children being larger than their parents,
while 62.1% was attributable to the parents of fit children being larger than parents as
a whole. In the runs with depth limits, however, only the second term is positive on
average, with the average values of the two terms being -1.47 and 2.24, respectively.
It must be noted that Luke [6] has found that in symbolic regression problems there is
a statistical bias toward fit children being the result of crossovers in which small
subtrees were inserted (in addition to the bias toward small subtrees being removed),
so that the relationships between these two terms observed in this problem are not
necessarily reflective of the relationships that are typical for problems as a whole.
Nevertheless, it appears that at least for the problems studied here the dominant cause
of code growth is the second term, i.e. that the parents of fit children are larger than
parents as a whole.

Figure 1. CPG graph, no size/depth limits. Figure 2. CPG graph, depth limit of 17.

3 Resilience in GP Trees

The key idea behind both the intron theory and the second part of the depth-correlation
theory is that the receiving parents who produce offspring more similar to themselves
will tend to be large, i.e. that it is large trees which will be most resilient in the face of
crossover. In this section we present an empirical measure of resilience and
investigate the relationship between size and resilience by applying our empirical
measure to randomly generated trees.
 Conceptually, the resilience of an individual is determined by the probability
distribution over all possible values of the behavioral difference between parent and
child (quantified in some application-specific way) that is associated with the
application of a genetic operator to that individual. In empirically sampling this
distribution, we have found that its mean value is often arbitrarily large, since there is
in general no limit on the maximum value of behavioral change. For this reason, we
instead characterize this distribution by its median value, using the resilience measure
described below.

3.1 Our Measurement of Resilience
We measure the resilience of an individual by performing a large number of mutations
on separate copies of the individual, and recording for each mutation the difference in
behavior between the parent and the child. For the symbolic regression problems we
are studying, we define the behavioral difference between two individuals as the
average absolute difference between corresponding points on the curves produced by
the two individuals. We define vulnerability as the median of the behavioral
differences associated with the mutations, and resilience as -1 times vulnerability. For

150

200

250

300

350

45 46 47 48 49 50

Generation

A
ve

ra
g

e
tr

ee
 s

iz
e Children c(n)

Receiving parents pr(n)
Recv. grandparents gr(n)

40

45

50

55

60

45 46 47 48 49 50
Generation

A
ve

ra
g

e
tr

ee
 s

iz
e Children c(n)

Receiving parents pr(n)
Recv. grandparents gr(n)

all experiments reported here, we will use 101 subtree mutations to estimate resilience.
Subtree mutations are performed using a 90% internal, 10% leaf weighted choice of
subtree insertion points, and the inserted subtrees are created using the grow algorithm
with a minimum depth of 1 and maximum depth of 5. Note that we define resilience in
terms of mutation rather than crossover since using crossover would introduce a
population-dependence that would make experiments on random trees considerably
more complicated.

3.2 The Resilience of Randomly Generated Trees
Our first experiment with resilience was to measure the resilience of arbitrary random
trees of various sizes. However, it soon became apparent that many of these trees
would be very unlikely to appear in any later generation GP population. For example,
the most resilient randomly generated trees had the form (* <always-zero> <always-
zero>), and thus could only be meaningfully changed by a mutation that replaced the
entire tree. At the other extreme, some trees performed computations involving final
and intermediate values on the order of 1015, which made them extremely non-resilient.
Since neither of these two types of trees are likely to be fit with respect to any
reasonable fitness function, we chose to narrow our sampling of randomly generated
trees using a specific target curve in this case the quartic polynomial f(x) =
x+x2+x3+x4. Specifically, any tree whose average difference over the interval [0,1]
from this function was less than or equal to 0.5 was considered "fit", while any tree
with more than this level of error was discarded as unfit.
 1000 relatively fit trees of each size (3 through 31, odd sizes only) were generated,
and their resiliences calculated as described in section 2.1 (note that there are no binary
trees containing an even number of nodes). All trees were generated using the grow
initialization method. Since the use of the grow algorithm introduces a certain shape
bias to the trees which are generated, this experiment could admittedly be improved by
using a ramped uniform initialization method [4].
 Figure 3 shows the average and median vulnerability (-1 times resilience) of
randomly generated trees as a function of their size. With the exception of one point
on the curve for average resilience, both average and median vulnerability decrease
monotonically as the tree size increases. Random trees of size 31, for example, on
average had 61% of the vulnerability value of random trees of size 9. Figure 3
establishes that with respect to the given domain (symbolic regression), the given
genetic operator (subtree mutation), and the given subset of all randomly generated
trees which were actually used in the experiment (those which had an average
difference of 0.5 or less from the quartic polynomial), large trees are on average less
vulnerable (more resilient) than small trees.
 It is also possible to study tree size as a function of resilience. Based on the same
experiment described above, figure 4 shows average tree size as a function of
resilience, where resilience is given as a percentile, i.e. the point above the label 90 on
the horizontal axis denotes the average size of trees that were in the 90-91st percentile
with respect to resilience. Figure 4 makes clear that in addition to large trees being on
average more resilient than small trees, the most resilient trees are large on average.

Figure 3. Vulnerability as a function of tree
size. Larger trees are typically more resilient.

Figure 4. Average tree size by resilience
percentile. Resilient trees are large.

0

5

10

15

20

25

30

0 10 20 30 40 50 60 70 80 90

Resilience (percentile)

A
vg

. t
re

e
si

ze

0

0.5

1

1.5

2

2.5

3

3 5 7 9 11 13 15 17 19 21 23 25 27 29 31

Tree size

V
u

ln
er

ab
ili

ty

Median

Average

3.3 Resilience in Actual GP Runs
A quantity that is closely related to the average vulnerability of trees in a GP
population is the median of the difference between offspring and receiving parent
behavior for all offspring created at a particular generation. For all problems discussed
in this paper, two relationships concerning this quantity consistently hold: median
behavioral change decreases during the lifetime of the run, and the median behavioral
change for fit children is always lower than that for the child population as a whole.
As an example, figure 5 illustrates the median behavioral change from the receiving
parent for children c(n) and for fit children p(n+1) for a typical run against the 9th
degree polynomial target function. Though the run described by figure 5 used 100%
crossover, these two relationships also hold if subtree mutation is used as the sole
genetic operator (though in this case behavioral change decreases considerably more
slowly). Since the genetic operators do not change during the course of the run, this
can only be the result of the population in one way or another becoming more resilient
with respect to the genetic operators.

Figure 5. Median behavioral change in a
typical run of degree 9 polynomial.

Figure 6. Average vulnerability in the run
described by figure 5.

 Figure 6 tracks the average vulnerability of individuals in the same run described by
figure 5, as measured by explicitly applying our resilience measure to every individual
in the population history. As shown in the figure, individuals become more resilient
over time, and selected individuals are consistently more resilient on average than
individuals as a whole. It is significant that individuals bred only through crossover
also become more resilient with respect to subtree mutation. The fact that the children
who are selected are consistently more resilient than children as a whole indicates that
evolution is preferentially selecting resilient individuals (though it does not necessarily
establish that the children's resilience is the cause of this preference). However, if we
accept that evolution is in a sense seeking out the more resilient individuals, it follows
from our analysis in section 2.2 that doing so would require it to generate larger and
larger trees.

3.4 What Makes Trees Resilient
The above sections have quantified resilience on a per-individual basis; however, to
understand the mechanisms by which resilience may be achieved it will be necessary
to quantify it on a per-node basis. To do this, we define a per-node measure of
vulnerability that is identical to the measure given above, except that in measuring the
vulnerability of a node N we will only perform mutations where N is the insertion point
for the randomly generated subtree. We refer to the set of per-node vulnerability
values for a tree as its vulnerability map. As an example, the S-expression (* (- X X)
(+ X X)) has a vulnerability map (* [2.15] (- [1.70] X [1.44] X [1.58]) (+ [0] X [0] X
[0])), where each value in brackets is the vulnerability of the node whose identity is
given by the symbol to the left of the brackets. Note that inviable nodes are indicated
by zeroes in the vulnerability map. Through experiments both with individuals from
actual GP runs and with hand-created trees, we have found that there are at least 4
distinct means by which low vulnerability can be achieved, which we summarize
below. In all cases where examples are given, more dramatic examples could be

0

0.5

1

1.5

2

1 10 20 30 40 50 60 70 80 90

Generation

M
ed

n
. b

eh
av

. c
h

an
g

e

Children c(n)

Fit children p(n+1)

0

1

2

3

4

5

0 10 20 30 40 50 60 70 80 90 100

Generation

A
vg

. V
u

ln
er

ab
ili

ty Children c(n)

Fit children p(n+1)

created using larger trees. Additionally, some examples depend on X being restricted
to the interval [0,1], but examples exist that do not have this dependency.

Inviable code: Inviable code has an obvious affect on both the vulnerability map and
on vulnerability. As illustrated above, inviable code is indicated by zero values in the
vulnerability map. Since each per-node vulnerability can never be less than zero, the
presence of inviable code can only make individuals more resilient.

Introns: Introns can be used to make trees more resilient. For example, in the tree (+
(+ (* X X) X) (- 0 0)), replacing the two zeroes with the subtree (* (* X X) (* X X))
lowers the overall vulnerability from 0.823 to 0.666, with the first occurrence of the
inserted subtree having a vulnerability map (* [1.55] (* [0.408] X [0.444] X [0.314])
(* [0.458] X [0.283] X [0.478])), which contains a set of relatively small values. This
use of introns is similar to depth attenuation (described below).

Arrangement of genetic material: Among equivalent trees of the same size and shape,
the arrangement of specific symbols can affect resilience. For example, two trees
which code for the expression x2+x are (* (+ X 1) X) and (+ (* X X) X). The former
expression has a vulnerability map of (* [2.35] (+ [1.04] X [.718] 1 [.754]) X [2.47])
and vulnerability of 1.04, while the latter has a vulnerability map of (+ [2.35] (* [1.64]
X [0.718] X [0.788]) X [1.52]) and vulnerability of 0.865. In this case, the placement
of * at the root of the former tree gives its rightmost leaf node a high vulnerability
which accounts for most of the overall difference.

Depth-attenuation: It is relatively easy to create trees whose per-node vulnerability
values decrease monotonically with depth. For example, the tree (* (* X X) (* X X))
has a vulnerability map (* [2.34] (* [0.567] X [0.39] X [0.418]) (* [0.467] X [0.323]
X [0.242])) which has this property. This, in combination with cancelling or near-
cancelling terms such as those in the example in the "Introns" section above, provides
a simple way to create large trees that are highly resilient.

 In actual GP runs that we have studied, the predominant way in which trees achieve
resilience appears to be depth-attenuation. In looking at the vulnerability maps for
later-generation trees, we consistently find that the vulnerability of deeper nodes tends
to be lower than that of nodes near the root (though this is not consistently true for
randomly generated trees). As an example, the following data is from an individual
from generation 50 of a run against the degree 9 polynomial. The individual had a
depth of 17, and its per-node vulnerability values averaged over depths 0 through 16
respectively were 2.89, 1.91, 2.71, 1.7, 0.649, 0.566, 0.257, 0.420, 0.309, 0.232, 0.203,
0.0501, 0.0488, 0.0368, 0.0329, 0.0299, and 0.0369. The individual's overall
vulnerability was 0.335. Notice that the per-node vulnerabilities for depths 13 through
16 are approximately 1/10 this value.

4 A Selection Scheme that Eliminates Bloat

Our preceding analysis has suggested that code growth is a result of the tendency of
GP to seek out trees that are more resilient. If this is the case, it should follow that
preventing GP from evolving a population of more and more resilient individuals
should eliminate bloat. One certain way to prevent the average behavioral change
from falling to an arbitrarily low value is simply to introduce a certain minimum
behavioral change (MBC) that individuals must undergo as a result of crossover or
mutation in order to be eligible for selection. For example, if we specify an MBC of
0.05 and heavily penalize (i.e. assign infinite fitness to) any child which differs from
its receiving parent by an value lower than this, then we would not expect the average
behavioral change to drop much below 0.05. Note this often penalizes children that
are better than their parents.

 We want to emphasize that we do not necessarily think this is a good idea for a
selection scheme. For one thing, it is extremely heavy-handed, imposing a strict
penalty on individuals whose genetic material may be of value to the population. It
may even penalize what would otherwise be the best-of-generation individual. It also
eliminates the possibility of neutral walks, which are considered an important aspect of
artificial evolution [14]. Nevertheless, the fact that this selection method limits the
buildup of resilience means that using it will tell us something about our explanation of
code growth.
 We conducted experiments using 4 levels of MBC: 0.2, 0.1, 0.05, and 10-5, in
addition to a control experiment with no MBC. No size or depth limits were used in
these experiments. Each experiment involved 20 separate runs against the degree 10
target polynomial, each lasting 300 generations, with the exception that the experiment
with MBC of 10-5 and the control experiment were run for only 50 generations due to
the extreme increase in tree size. The degree 10 polynomial was used to allow most or
all of the growth to occur before the run solved. In practice we found for MBC values
of 0.05, 0.1 and 0.2 that between 5% and 15% of the individuals were penalized in
each generation.
 As shown in figure 7, tree growth was lower for each successively higher value of
MBC. Moreover, for MBC values of 0.1 and 0.2 the average tree size plateaus rather
than continuing to increase. For these MBC values, we have continued individuals
runs for up to 10,000 generations and have never seen any deviation from this plateau.
Note that eliminating only neutral crossovers (MBC of 10-5) did not dramatically
reduce code growth, which is consistent with the results of Luke [6-7]. However,
eliminating (phenotypically) near-neutral crossovers did eliminate code growth.
Furthermore, as will be shown in section 5, eliminating code growth in this way
actually improves performance independent of the obvious savings in execution time
per generation.

 Figure 7. Average tree sizes for various levels
 of minimum behavioral change (MBC).

4.1 The Possibility of MBC as a Probabilistic Size Penalty

Since we have shown in section 2.2 that the more resilient trees are typically large, and
since MBC tends to penalize resilient trees, the possibility exists that the effect of
MBC on code growth is due to its penalizing of some critical fraction of the larger
trees, rather than to any connection with the underlying causes of code growth. To test
this possibility we recorded, for all 50 runs of the degree 9 polynomial using an MBC
of 0.1, the average fraction of individuals of each size S that were penalized in each
generation N. We then performed 20 additional runs in which, for every S and N, this
same fraction of individuals were penalized, but the individuals to be penalized were
selected at random from among individuals of the given size (rather than being
selected based on behavioral change). The curve labeled PSP in Figure 7 shows the
average tree size for these additional runs. As shown in the figure, the probabilistic
size penalty used in these additional runs has only a very slight affect on code growth.

0
50

100
150
200
250
300
350

0 100 200 300
Generation

A
vg

. t
re

e
si

ze

None
10^(-5)
0.05
0.1
0.2
PSP

Thus, that an MBC of 0.1 did eliminate code growth depended critically on the fact
that it was the resilient individuals that were specifically penalized.

5 Effects on Scalability

As mentioned in section 3, there are a number of reasons not to use MBC as a selection
scheme, including its heavy-handedness, its ability to penalize good individuals, and
its elimination of neutral walks. Nevertheless, it is worth studying the affect of this
approach on performance for two reasons. First, doing so will give us at least a rough
idea of the affect on performance of eliminating bloat. Second, the performance of this
approach can act as a benchmark for any more sophisticated measures that are devised
to eliminate bloat. We tested the performance of this approach using 6 symbolic
regression problems with target functions of the form x+x2+x3 + . . . + xn for 4 ≤ n ≤ 9,
using 50 runs for each problem. Figures 8 and 9 give the success probability curves
associated with MBC and with standard GP selection, respectively. Table 1
summarizes the computational effort associated with each selection method, where IA,
GA, and RA denote the computational effort, optimum number of generations, and
optimum number of runs, respectively for standard GP selection, and IB, GB, and RB
denote the corresponding quantities for MBC selection.
 The affect of MBC on scalability in these problems is dramatic. With standard GP
selection, the probability of finding a perfect solution increases rapidly up to a certain
generation, and then plateaus. As the problem is scaled up in difficulty, the value at
which the success probability plateaus becomes lower and lower. In contrast, with an
MBC of 0.1, although the success probability curves rise more slowly as the problem
is scaled up, they consistently attain a high final value. Indeed, with an MBC of 0.1 all
300 runs eventually succeed, with the longest run of the 9th degree polynomial
succeeding at generation 276.
 It must be noted that since MBC eliminates the buildup of resilience in addition to
eliminating code growth (which we take as a symptom of the buildup of resilience), it
is not entirely clear which of these features is responsible for the performance
difference we observe. In other words, although we believe code growth happens
because creating larger trees is a natural and easy way to build up resilience, it may
still be possible to eliminate code growth while allowing the buildup of resilience to
occur in other ways. At the moment, we do not have a way to know what the affect on
performance of eliminating code growth without eliminating the buildup of resilience
would be in these problems. But in any case, it appears there is untapped potential to
increase the scalability of GP by taking the issues of resilience and code growth into
account.

Figure 8. Success probabilities using MBC of
0.1. Probability of success continues to
improve even late in the run.

Figure 9. Success probabilities using standard
GP selection. Probability of success plateaus
at different levels as problem is scaled up.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Generation

P
ro

b
ab

ili
ty

 o
f

S
u

cc
es

s

Degree 4

Degree 5

Degree 6

Degree 7

Degree 8

Degree 9

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200 250 300

Generation

P
ro

b
ab

ili
ty

 o
f

S
u

cc
es

s

Degree 4

Degree 5

Degree 6

Degree 7

Degree 8

Degree 9

Table 1. Comparison of computational effort for standard GP selection (A) and for
MBC of 0.1 (B).

Degree IA(M,i,z) GA RA IB(M,i,z) GB RB IA/IB
4 26,000 25 1 32,000 31 1 0.81
5 64,000 31 2 43,000 42 1 1.5
6 164,000 40 4 48,000 47 1 3.4
7 308,000 43 7 73,000 72 1 4.2
8 784,000 48 16 107,000 106 1 7.3
9 2,106,000 77 27 277,000 276 1 7.6

6 Conclusions

We have proposed an explanation of code growth based on the concept of resilience,
and have shown that preventing the buildup of resilience also prevents code growth.
Through random sampling of equal numbers of individuals of 15 different sizes, we
have found that the most resilient individuals are larger than average. By monitoring
resilience in actual runs, we have found that trees become more resilient over time and
that selected individuals are consistently more resilient than individuals as a whole.
We have also shown that by using a selection method that prevents the population
from becoming resilient, we can eliminate code growth. All of this strongly suggests
that code growth occurs as a side effect of the seeking out by evolution of resilient
trees. Finally, we have shown that eliminating code growth in this way yields an
improvement in performance that increases as the problem is scaled in difficulty.

References

1. T. Blickle and L. Thiele. Genetic programming and redundancy. In J. Hopf (ed.), Genetic
Algorithms Within the Framework of Evolutionary Computation, Max-Planck-Institut fur
Informatik: Saarbrucken, Germany, 1994, p 33-38.

2. J. R. Koza. Genetic Programming: On the Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press; 1992.

3. W. B. Langdon, T. Soule, R. Poli, and J. A. Foster. The evolution of size and shape. In
Advances in Genetic Programming III, Cambridge, MA: The MIT Press, 1999, p 163-190.

4. W. B. Langdon. Size-fair and homologous tree genetic programming crossovers. Genetic
Programming and Evolvable Machines, 1(1/2):95-119, 2000.

5. W. B. Langdon and R. Poli. Foundations of Genetic Programming. Springer-Verlag; 2002.
6. S. Luke. Issues in Scaling Genetic Programming: Breeding Strategies, Tree Generation,

and Code Bloat. PhD thesis, University of Maryland, College Park, 2000.
7. S. Luke. Code growth is not caused by introns. In Late-Breaking Papers, Proceedings of

GECCO 2000, 2000, p 228-235.
8. N. F. McPhee and J. D. Miller. Accurate replication in genetic programming. In L. J.

Eshelman (ed.), Proc. Sixth Int. Conf. Genetic Algorithms, Morgan Kaufmann, 1995, p 303-
309.

9. P. Nordin and W. Banzhaf. Complexity compression and evolution. In L. J. Eshelman (ed.),
Prof. Sixth Int. Conf. Genetic Algorithms, Morgan Kaufmann, 1995, p 310-317.

10. P. Nordin and F. Francone. Explicitly defined introns and destructive crossover in genetic
programming. In P. Angeline and K.E. Kinnear Jr (eds.), Advances in Genetic
Programming II, Cambridge, MA: The MIT Press, 1996, p 111-134.

11. T. Soule. Code Growth in Genetic Programming, PhD thesis, University of Idaho, 1998.
12. T. Soule and J. A. Foster. Removal bias: a new cause of code growth in tree-based

evolutionary programming. In ICEC 98: IEEE International Conf. on Evolutionary
Computation, IEEE Press, 1998, p 781-786.

13. T. Soule and R. B. Heckendorn. An analysis of the causes of code growth in genetic
programming. Genetic Programming and Evolvable Machines, 3(3):283-309, 2002.

14. T. Yu and J. Miller. Finding needles in haystacks is not hard with neutrality. In Foster et al.
(eds.), Proceedings of EuroGP'2002, Springer-Verlag, 2002, p 13-25.

