A Simple Distribution-Free Approach to the
Max k-Armed Bandit Problem

Matthew J. Streeter! and Stephen F. Smith?

Computer Science Department and
Center for the Neural Basis of Cognition® and
The Robotics Institute?

Carnegie Mellon University
Pittsburgh, PA 15213
{matts,sfs}@cs.cmu.edu

Abstract. The max k-armed bandit problem is a recently-introduced
online optimization problem with practical applications to heuristic search.
Given a set of k slot machines, each yielding payoff from a fixed (but un-
known) distribution, we wish to allocate trials to the machines so as to
maximize the maximum payoff received over a series of n trials. Previ-
ous work on the max k-armed bandit problem has assumed that payoffs
are drawn from generalized extreme value (GEV) distributions. In this
paper we present a simple algorithm, based on an algorithm for the clas-
sical k-armed bandit problem, that solves the max k-armed bandit prob-
lem effectively without making strong distributional assumptions. We
demonstrate the effectiveness of our approach by applying it to the task
of selecting among priority dispatching rules for the resource-constrained
project scheduling problem with maximal time lags (RCPSP/max).

1 Introduction

In the classical k-armed bandit problem one is faced with a set of k£ slot machines,
each having an arm that, when pulled, yields a payoff drawn independently at
random from a fixed (but unknown) distribution. The goal is to allocate trials to
the arms so as to maximize the cumulative payoff received over a series of n trials.
Solving the problem entails striking a balance between exploration (determining
which arm yields the highest mean payoff) and exploitation (repeatedly pulling
this arm).

In the max k-armed bandit problem, the goal is to maximize the mazimum
(rather than cumulative) payoff. This version of the problem arises in practice
when tackling combinatorial optimization problems for which a number of ran-
domized search heuristics exist: given k heuristics, each yielding a stochastic
outcome when applied to some particular problem instance, we wish to allocate
trials to the heuristics so as to maximize the maximum payoff (e.g., the maximum
number of clauses satisfied by any sampled variable assignment, the minimum
makespan of any sampled schedule). Cicirello and Smith (2005) show that a max
k-armed bandit approach yields good performance on the resource-constrained
project scheduling problem with maximum time lags (RCPSP/max).

1.1 Motivations

When solving the classical k-armed bandit problem, one can provide meaningful
performance guarantees subject only to the assumption that payoffs are drawn
from a bounded interval, for example [0, 1]. In the max k-armed bandit problem
stronger distributional assumptions are necessary, as illustrated by the following
example.

Example 1. There are two arms. One returns payoff % with probability 0.999,
and payoff 1 with probability 0.001; the other returns payoff % with probabil-
ity 0.995 and payoff 1 with probability 0.005. It is not known which arm is which.

Given a budget of n pulls of the two arms described in Example 1, a variety of
techniques are available for (approximately) maximizing the cumulative payoff
received. However, any attempt to maximize the mazimum payoff received over
n trials is hopeless. No information is gained about any of the arms until a payoff
of 1 is obtained, at which point the maximum payoff cannot be improved.

Previous work on the max k-armed bandit problem has assumed that pay-
offs are drawn from generalized extreme value (GEV) distributions. A random
variable Z has a GEV distribution if

P[Z < 2] = exp (— <1+ €(Za—u)>—é>

for some constants u, o > 0, and &.

The assumption that payoffs are drawn from a GEV is justified by the Ex-
tremal Types Theorem [6], which singles out the GEV as the limiting distribution
of the maximum of a large number of independent identically distributed (i.i.d.)
random variables. Roughly speaking, one can think of the Extremal Types The-
orem as an analogue of the Central Limit Theorem. Just as the Central Limit
Theorem states that the sum of a large number of i.i.d. random variables con-
verges in distribution to a Gaussian, the Extremal Types Theorem states that
the maximum of a large number of i.i.d. random variables converges in distribu-
tion to a GEV. Despite this asymptotic guarantee, we will see in §4 that the GEV
is often not even an approximately accurate model of the payoff distributions
encountered in practice.

In this work, we do not assume that the payoff distributions belong to any
specific parametric family. In fact, we will not make any formal assumptions at all
about the payoff distributions, although (as shown in Example 1) our approach
cannot be expected to work well if the distributions are chosen adversarially.
Roughly speaking, our approach will work best when the following two criteria
are satisfied.

1. There is a (relatively low) threshold t.,iticar such that, for all t > t.ritical,
the arm that is most likely to yield a payoff > ¢ is the same as the arm most
likely to yield a payoff > tcpiticar- Call this arm i*.

2. Astincreases beyond t..itical, there is a growing gap between the probability
that arm ¢* yields a payoff > ¢ and the corresponding probability for other
arms. Specifically, if we let p;(t) denote the probability that the i" arm

pix (t)

returns a payoff > ¢, the ratio FRON should increase as a function of t for

t > teritical, for any 4 7£ 7.

Figure 1 illustrates a set of two payoff distributions that satisfy these as-
sumptions.

0.8 1 ---Arm 1

—Arm 2

0.6

0.4 4

Pr[payoff > t]

0.2 4 ot
s o critical

growing gap

Fig.1. A max k-armed bandit instance on which Threshold Ascent should perform
well.

1.2 Contributions
The primary contributions of this paper are as follows.

1. We present a new algorithm, Chernoff Interval Estimation, for the classical
k-armed bandit problem and prove a bound on its regret. Our algorithm is
extremely simple and has performance guarantees competitive with the state
of the art.

2. Building on Chernoff Interval Estimation, we develop a new algorithm, Thresh-
old Ascent, for solving the max k-armed bandit problem. Our algorithm is
designed to work well as long as the two mild distributional assumptions
described in §1.1 are satisfied.

3. We evaluate Threshold Ascent experimentally by using it to select among
randomized priority dispatching rules for the RCPSP/max. We find that
Threshold Ascent (a) performs better than any of the priority rules perform
in isolation, and (b) outperforms the recent QD-BEACON max k-armed
bandit algorithm of Cicirello and Smith [4, 5].

1.3 Related Work

The classical k-armed bandit problem was first studied by Robbins [11] and
has since been the subject of numerous papers; see Berry and Fristedt [3] and
Kaelbling [7] for overviews. We give a more detailed discussion of related work
on the classical k-armed bandit problem as part of our discussion of Chernoff
Interval Estimation in §2.2

The max k-armed bandit problem was introduced by Cicirello and Smith
[4,5], whose experiments with randomized priority dispatching rules for the
RCPSP /max form the basis of our experimental evaluation in §4. Cicirello and
Smith show that their max k-armed bandit problem yields performance on the
RCPSP/max that is competitive with the state of the art. The design of Ci-
cirello and Smith’s heuristic is motivated by an analysis of the special case in
which each arm’s payoff distribution is a GEV distribution with shape param-
eter £ = 0. Streeter and Smith [13] provide a theoretical treatment of the max
k-armed bandit problem under the assumption that each payoff distribution is
a GEV.

2 Chernoff Interval Estimation

In this section we present and analyze a simple algorithm, Chernoff Interval
Estimation, for the classical k-armed bandit problem. In §3 we use this approach
as the basis for Threshold Ascent, an algorithm for the max k-armed bandit
problem.

In the classical k-armed bandit problem one is faced with a set of k arms.
The i*" arm, when pulled, returns a payoff drawn independently at random from
a fixed (but unknown) distribution. All payoffs are real numbers between 0 and
1. We denote by p; the expected payoff obtained from a single pull of arm ¢, and
define p* = max;<;<y ;. We consider the finite-time version of the problem, in
which our goal is to maximize the cumulative payoff received using a fixed budget
of n pulls. The regret of an algorithm (on a particular instance of the classical
k-armed bandit problem) is the difference between the cumulative payoff the
algorithm would have received by pulling the single best arm n times and the
cumulative payoff the algorithm actually received.

Chernoff Interval Estimation is simply the well-known interval estimation
algorithm [7, 8] with confidence intervals derived using Chernoff’s inequality. Al-
though various interval estimation algorithms have been analyzed in the litera-
ture and a variety of guarantees have been proved, both (a) our use of Chernoff’s
inequality in an interval estimation algorithm and (b) our analysis appear to be
novel. In particular, when the mean payoff returned by each arm is small (relative
to the maximum possible payoff) our algorithm has much better performance
than the recent algorithm of [1], which is identical to our algorithm except that
confidence intervals are derived using Hoeffding’s inequality. We give further dis-
cussion of related work in §2.2.

Procedure ChernoffIntervalEstimation(n, ¢):
1. Initialize z; < 0, n; «— 0 Vi € {1,2,...,k}.
2. Repeat n times:
(a) 7 < argmax; U (fi;, n;), where fi; = 4 and

a+4/2nopoata? .
Ulo,ng) =4 o+ =g 1m0 >0
0 otherwise

where o« = In (%)

(b) Pull arm 7, receive payoff R, set x; « x; + R, and set
n; < n; + 1.

2.1 Analysis

In this section we put a bound on the expected regret of Chernoff Interval Es-
timation. Our analysis proceeds as follows. Lemma 1 shows that (with a cer-
tain minimum probability) the value U (fi;, n;) is always an upper bound on ;.
Lemma 2 then places a bound on the number of times the algorithm will sample
an arm whose mean payoff is suboptimal. Theorem 1 puts these results together
to obtain a bound on the algorithm’s expected regret.

We will make use of the following inequality.

Chernoff’s inequality. Let X = Z;;l X; be the sum of n independent iden-
tically distributed random variables with X; € [0,1] and p = E[X;]. Then for

p>0, ,
P [;{ <(1- ﬁ),u] < exp (_n/;ﬁ)
and)
P {X > (1+ﬁ)u] < exp <nuﬂ) .
n 3

We will also use the following easily-verified algebraic fact.

Fact 1 If U = U(ug,ng) then

2
Uno(lf%) — %, .

Lemma 1. During a run of ChernoffIntervalEstimation(n,) it holds with prob-
ability at least 1 — g that for all arms i € {1,2,...,k} and for all n repetitions
Of the l00p7 U(p/unl) > g -

Proof. Tt suffices to show that for any arm ¢ and any particular repetition of the
loop, P[U(f;,n:) < i) < ﬁ. Consider some particular fixed values of p;, «,
and n;, and let p. be the largest solution to the equation

U(fpies i) = s (1)

By inspection, U (fi., n;) is strictly increasing as a function of p.. Thus U (fi;, n;) <
pi if and only if fi; < pc, so P[U(fis, i) < pi] = Plp; < pe]. Thus

PU(fi, ni) < pa] =P 1 < pel

“tfun (- (1)
o222 (-))

= exp (—a)
LB
2nk

where on the third line we have used Chernoff’s inequality, and on the fourth
line we have used Fact 1 in conjunction with (1). O

Lemma 2. During a run of ChernoffIntervalEstimation(n, d) it holds with prob-
ability at least 1 — & that each suboptimal arm i (i.e., each arm i with p; < p*)
1s pulled at most %ﬁ times, where y; = %

Proof. Let i* be some optimal arm (i.e., p;» = p*) and assume that U (fi;», ng=) >
w* for all n repetitions of the loop. By Lemma 1, this assumption is valid with
probability at least 1 — %. Consider some particular suboptimal arm ¢. By in-
spection, we will stop sampling arm ¢ once U(fi;,n;) < p*. So it suffices to show

1

that if n; > %W, then U(fi;,n;) < p* with probability at least 1 — %

(then the probability that any of our assumptions fail is at most % + /<:2% =9).
To show this we will prove two claims.

Claim. If n; > i—“ﬁ, then with probability at least 1 — %, i < 4 /yi_ll“'

Proof (of Claim 1).

e] e 1+ 550

"y — 7\ 2
< o (22 L)

3 Yi

n;u*

= exp <— ; (1- \/y7)2>
<exp(—a)
_ 0 90
C 2k 2k

Claim. If n; > i—‘fﬁ and fi; < \/y; i, then U(fg, n;) < p*.

Proof (of Claim 2). Let U; = U(f;, n;), and suppose for contradiction that
U; > p*. Then by Fact 1,
_\ -2
2a L
== (=2
" (Ui)

The right hand side increases as a function of fi; (assuming ji; < U;, which is true
by definition). So if fi; < \/y; !41; then replacing fi; with 4/ Y 114; only increases
the value of the right hand side. Similarly, the right hand side decreases as a
function of U;, so if U; > u* then replacing replacing U; with p* only increases
the value of the right hand side. Thus

2
—1

200 1 \VYi M _2a _9
/.»L*

ng; < — E(l_\/ZZ)

which is a contradiction. a
Putting Claims 1 and 2 together, once n; > i—“m it holds with probability
at least 1 — 2% that U(fi,n;) < p*, so arm ¢ will no longer be pulled. O

The following theorem shows that when n is large (and the parameter 4 is
small), the total payoff obtained by Chernoff Interval Estimation over n trials is
almost as high as what would be obtained by pulling the single best arm for all
n trials.

Theorem 1. The expected regret incurred by ChernoffIntervalEstimation(n,d)

is at most
(1 =9)2/3p*n(k —a+du™n

where o = In (%)

Proof. We confine our attention to the special case k = 2. The proof for general
k is similar.

First, note that the conclusion of Lemma 2 fails to hold with probability at
most §. Because expected regret cannot exceed p*n, this scenario contributes at
most dp*n to overall expected regret. Thus it remains to show that, conditioned
on the event that the conclusion of Lemma 2 holds, expected regret is at most
2/ 3un(k — 1)a.

Assume p* = p; > po and let y = % By Lemma 2, we sample arm 2 at
p* — p2 = p*(1 — y). Thus expected total regret is at most

most min{n } times. Each sample of arm 2 incurs expected regret

u*(l—y)min{m?ﬁ(l_lmz} . 2)

Using the fact that y < 1,

Plugging this value into (2), the expected total regret is at most

min {,u*An, 12(1}

where A = 1 — y. Setting these two expressions equal gives A = 2,/ 3:‘ as the

value of A that maximizes expected regret. Thus the expected regret is at most
wrAn = 2¢/3uFna = 2/3p*n(k — 1)
O

2.2 Discussion and Related Work

Types of Regret Bounds In comparing the regret bound of Theorem 1 to
previous work, we must distinguish between two different types of regret bounds.
The first type of bound describes the asymptotic behavior of regret (as n — 00)
on a fized problem instance (i.e., with all k payoff distributions held constant).
In this framework, a lower bound of 2(In(n)) has been proved, and algorithms
exist that achieve regret O(In(n)) [1]. Though we do not prove it here, Chernoff
Interval Estimation achieves O(In(n)) regret in this framework when § is set
appropriately.

The second type of bound concerns the maximum, over all possible instances,
of the expected regret incurred by the algorithm when run on that instance for
n pulls. In this setting, a lower bound of £2(v/kn) has been proved [2]. Tt is this
second form of bound that Theorem 1 provides. In what follows, we will only
consider bounds of this second form.

The Classical k-Armed Bandit Problem We are not aware of any work
on the classical k-armed bandit problem that offers a better regret bound (of
the second form) than the one proved in Theorem 1. Auer et al. [1] analyze an
algorithm that is identical to ours except that the confidence intervals are de-
rived from Hoeffding’s inequality rather than Chernoff’s inequality. An analysis
analogous to the one in this paper shows that their algorithm has worst-case
regret O(y/nklIn(n)) when the instance is chosen adversarially as a function of
n. Plugging 6 = % into Theorem 1 gives a bound of O(y/nu*kIn(n)), which
is never any worse than the latter bound (because pu* < 1) and is much better
when p* is small.

The Nonstochastic Multiarmed Bandit Problem In a different paper,
Auer et al. [2] consider a variant of the classical k-armed bandit problem in
which the sequence of payoffs returned by each arm is determined adversarially
in advance. For this more difficult problem, they present an algorithm called
Exp3.1 with expected regret

8v/(e — 1)Gmaxk In(k) + 8(e — 1)k + 2k In(k)

where Gax is the maximum, over all k arms, of the total payoff that would be
obtained by pulling that arm for all n trials. If we plug in Gpax = p*n, this
bound is sometimes better than the one given by Theorem 1 and sometimes not,
depending on the values of n, k, and p*, as well as the choice of the parameter

J.

3 Threshold Ascent

To solve the max k-armed bandit problem, we use Chernoff Interval Estimation
to maximize the number of payoffs that exceed a threshold T that varies over
time. Initially, we set T' to zero. Whenever s or more payoffs > T" have been re-
ceived so far, we increment T'. We refer to the resulting algorithm as Threshold
Ascent. The code for Threshold Ascent is given below. For simplicity, we assume
that all payoffs are integer multiples of some known constant A.

Procedure Threshold Ascent(s, n,
1. Initialize T « 0 and nf =
{0,A,24,...,1— A1}
2. Repeat n times:
(a) While Zle Si(T) > s do:

9):
0, Vi € {1,2,...,k},R €

T—T4+ A

where S;(t) = Y po,nf is the number of payoffs > ¢
received so far from arm 7.

(b) ¢ « argmax; U Siyfﬂ,n,;), where n; = Y pnft is the

number of times arm 4 has been pulled and

a++/2nopoata? .
U(po,no) = po + —— if ng >.()
0 otherwise

where o« = In (%)

(¢) Pull arm 7, receive payoff R, and set nff — nft 4 1.

The parameter s controls the tradeoff between exploration and exploitation.
To understand this tradeoff, it is helpful to consider two extreme cases.

Case s = 1. ThresholdAscent(1,n,6) is equivalent to round-robin sampling.
When s = 1, the threshold T is incremented whenever a payoff > T is ob-
tained. Thus the value % calculated in 2 (b) is always 0, so the value of

U (%, nz> is determined strictly by n;. Because U is a decreasing function of

n;, the algorithm simply samples whatever arm has been sampled the smallest
number of times so far.

Case s = 0o. ThresholdAscent (oo, n, §) is equivalent to ChernoffIntervalEstima-
tion (n,d) running on a k-armed bandit instance where payoffs > T' are mapped
to 1 and payoffs < T are mapped to 0.

4 Evaluation on the RCPSP/max

Following Cicirello and Smith [4,5], we evaluate our algorithm for the max k-
armed bandit problem by using it to select among randomized priority dispatch-
ing rules for the resource-constrained project scheduling problem with maximal
time lags (RCPSP /max). Cicirello and Smith’s work showed that a max k-armed
bandit approach yields good performance on benchmark instances of this prob-
lem.

Briefly, in the RCPSP /max one must assign start times to each of a number
of activities in such a way that certain temporal and resource constraints are
satisfied. Such an assignment of start times is called a feasible schedule. The
goal is to find a feasible schedule whose makespan is as small as possible, where
makespan is defined as the maximum completion time of any activity.

Even without maximal time lags (which make the problem more difficult), the
RCPSP is NP-hard and is “one of the most intractable problems in operations
research” [9]. When maximal time lags are included, the feasibility problem (i.e.,
deciding whether a feasible schedule exists) is also NP-hard.

4.1 The RCPSP/max

Formally, an instance of the RCPSP /max is a tuple Z = (A, R, 7), where A is a
set of activities, R is a vector of resource capacities, and 7 is a list of temporal
constraints. Each activity a; € A has a processing time p;, and a resource demand
rir for each k € {1,2,...,|R|}. Each temporal constraint T € 7 is a triple
T = (i,7,0), where i and j are activity indices and 0 is an integer. The constraint
T = (i,7,0) indicates that activity a; cannot start until ¢ time units after activity
a; has started.

A schedule S assigns a start time S(a) to each activity a € A. S is feasible if

S(aj) — S(a;) >6 ¥(i,j,6) €T
(i.e., all temporal constraints are satisfied), and

> rik<Rp Vt>0ke{1,2,...|R[}
a; €A(S,t)

where A(S,t) = {a; € A | S(a;) <t < S(a;) + p;} the set of activities that are
in progress at time t. The latter equation ensures that no resource capacity is
ever exceeded.

4.2 Randomized Priority Dispatching Rules

A priority dispatching rule for the RCPSP/max is a procedure that assigns
start times to activities one at a time, in a greedy fashion. The order in which
start times are assigned is determined by a rule that assigns priorities to each
activity. As noted above, it is NP-hard to generate a feasible schedule for the
RCPSP /max. Priority dispatching rules are therefore augmented to perform a
limited amount of backtracking in order to increase the odds of producing a
feasible schedule. For more details, see [10].

Cicirello and Smith describe experiments with randomized priority dispatch-
ing rules, in which the next activity to schedule is chosen from a probability
distribution, with the probability assigned to an activity being proportional to
its priority. Cicirello and Smith consider the five randomized priority dispatching
rules in the set H = {LPF,LST, MST, MTS, RSM}. See Cicirello and Smith
[4,5] for a complete description of these heuristics. We use the same five heuris-
tics as Cicirello and Smith, with two modifications: (1) we added a form of
intelligent backtracking to the procedure of [10] in order to increase the odds of
generating a feasible schedule and (2) we modified the RSM heuristic to improve
its performance.

4.3 Instances

We evaluate our approach on a set Z of 169 RCPSP/max instances from the
ProGen/max library [12]. These instances were selected as follows. We first ran
the heuristic LPF' (the heuristic identified by Cicirello and Smith as having the
best performance) 10,000 times on all 540 instances from the TESTSETC data set.
For many of these instances, LPF found a (provably) optimal schedule on a large
proportion of the runs. We considered any instance in which the best makespan
found by LPF was found with frequency > 0.01 to be “easy” and discarded
it from the data set. What remained was a set Z of 169 “hard” RCPSP/max
instances.

For each RCPSP/max instance I € Z, we ran each heuristic h € H 10,000
times, storing the results in a file. Using this data, we created a set IC of 169
five-armed bandit problems (each of the five heuristics h € H represents an
arm). After the data were collected, makespans were converted to payoffs by
multiplying each makespan by —1 and scaling them to lie in the interval [0, 1].

4.4 Payoff Distributions in the RCPSP /max

To motivate the use of a distribution-free approach to the max k-armed bandit
problem, we examine the payoff distributions generated by randomized priority

dispatching rules for the RCPSP/max. For a number of instances I € Z, we
plotted the payoff distribution functions for each heuristic h € H. For each
distribution, we fitted a GEV to the empirical data using maximum likelihood
estimation of the parameters p, o, and &, as recommended by Coles [6].

Our experience was that the GEV sometimes provides a good fit to the
empirical cumulative distribution function but sometimes provides a very poor
fit. Figure 2 shows the empirical distribution and the GEV fit to the payoff
distribution of LPF on instances PSP129 and PSP121. For the instance PSP129,
the GEV accurately models the entire distribution, including the right tail. For
the instance PSP121, however, the GEV fit severely overestimates the probability
mass in the right tail. Indeed, the distribution in Figure 2 (B) is so erratic that
no parametric family of distributions can be expected to be a good model of its
behavior. In such cases a distribution-free approach is preferable.

(A) Instance PSP129 (B) Instance PSP121
1 1
0.8 - - --Empirical 0.8 ----Empirical
= distribution = distribution
c 06 —— Maximum ul: 06 — Maximum
s : likelihood GEV fit s : likelihood GEV fit
) 7
B oa 8 oa
— —
= T
&, 25
0 0 T T T ;]
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t t

Fig. 2. Empirical cumulative distribution function of the LPF heuristic for two
RCPSP/max instances. (A) depicts an instance for which the GEV provides a good
fit; (B) depicts an instance for which the GEV provides a poor fit.

4.5 An Illustrative Run

Before presenting our results, we illustrate the typical behavior of Threshold
Ascent by showing how it performs on the instance PSP124. For this and all
subsequent experiments, we run Threshold Ascent with parameters n = 10,000,
s =100, and 6 = 0.01.

Figure 3 (A) depicts the payoff distributions for each of the five arms. As can
be seen, LPF has the best performance on PSP124. MST has zero probability
of generating a payoff > 0.8, while LST and RMS have zero probability of
generating a payoff > 0.9. MTS gives competitive performance up to a payoff
of t = 0.9, after which point the probability of obtaining a payoff > ¢ suddenly
drops to zero.

Figure 3 (B) shows the number of pulls allocated by Threshold Ascent to
each of the five arms as a function of the number of pulls performed so far. As

can be seen, Threshold Ascent is a somewhat conservative strategy, allocating a
fair number of pulls to heuristics that might seem “obviously” suboptimal to a
human observer. Nevertheless, Threshold Ascent spends the majority of its time
sampling the single best heuristic (LPF).

(A) Payoff Distributions (B) Behavior of Threshold Ascent

6000
o LPF
5000 oLST

4000

s RSM

°©

Threshold increment

Pr[payoff > t]
2
8

Num. pulls per arm
w
8
8
8

1000

0 2000 4000 6000 8000 10000

Num. pulis total

Fig. 3. Behavior of Threshold Ascent on instance PSP124. (A) shows the payoff distri-
butions; (B) shows the number of pulls allocated to each arm.

4.6 Results

For each instance K € K, we ran three max k-armed bandit algorithms, each
with a budget of n = 10,000 pulls: Threshold Ascent with parameters n =
10,000, s = 100, and 6 = 0.01, the QD-BEACON algorithm of Cicirello and
Smith [5], and an algorithm that simply sampled the arms in a round-robin
fashion. Cicirello and Smith describe three versions of QD-BEACON; we use
the one based on the GEV distribution. For each instance K € K, we define
the regret of an algorithm as the difference between the minimum makespan
(which corresponds to the maximum payoff) sampled by the algorithm and the
minimum makespan sampled by any of the five heuristics (on any of the 10,000
stored runs of each of the five heuristics). For each of the three algorithms,
we also recorded the number of instances for which the algorithm generated a
feasible schedule. Table 1 summarizes the performance of these three algorithms,
as well as the performance of each of the five heuristics in isolation.

Of the eight max k-armed bandit strategies we evaluated (Threshold Ascent,
QD-BEACON, round-robin sampling, and the five pure strategies), Threshold
Ascent has the least regret and achieves zero regret on the largest number of
instances. Additionally, Threshold Ascent generated a feasible schedule for the
166 (out of 169) instances for which any of the five heuristics was able to generate
a feasible schedule (for three instances, none of the five randomized priority rules
generated a feasible schedule after 10,000 runs).

Table 1. Performance of eight heuristics on 169 RCPSP/max instances.

Heuristic Y Regret P[Regret = 0] Num. Feasible
Threshold Ascent 188 0.722 166
Round-robin sampling 345 0.556 166
LPF 355 0.675 164
MTS 402 0.657 166
QD-BEACON 609 0.538 165
RSM 2130 0.166 155
LST 3199 0.095 164
MST 4509 0.107 164

4.7 Discussion

Two of the findings summarized in Table 1 may seem counterintuitive: the fact
that round-robin performs better than any single heuristic, and the fact that
QD-BEACON performs worse than round-robin. We now examine each of these
findings in more detail.

Why Round-Robin Sampling Performs Well In the classical k-armed ban-
dit problem, round-robin sampling can never outperform the best pure strategy
(where a pure strategy is one that samples the same arm the entire time), either
on a single instance or across multiple instances. In the max k-armed bandit
problem, however, the situation is different, as the following example illustrates.

Example 2. Suppose we have 2 heuristics, and we run them each for n trials
on a set of I instances. On half the instances, heuristic A returns payoff 0 with
probability 0.9 and returns payoff 1 with probability 0.1, while heuristic B re-
turns payoff 0 with probability 1. On the other half of the instances, the roles of
heuristics A and B are reversed.

If n is large, round-robin sampling will yield total regret ~ 0, while either
of the two heuristics will have regret ~ %I . By allocating pulls equally to each
arm, round-robin sampling is guaranteed to sample the best heuristic at least 7
times, and if n is large this number of samples may be enough to exploit the tail
behavior of the best heuristic.

Understanding QD-BEACON QD-BEACON is designed to converge to a
single arm at a doubly-exponential rate. That is, the number of pulls allocated
to the (presumed) optimal arm increases doubly-exponentially relative to the
number of pulls allocated to presumed suboptimal arms. In our experience, QD-
BEACON usually converges to a single arm after at most 10-20 pulls from each
arm. This rapid convergence can lead to large regret if the presumed best arm
is actually suboptimal.

5 Conclusions

We presented an algorithm, Chernoff Interval Estimation, for solving the classical
k-armed bandit problem, and proved that it has good performance guarantees
when the mean payoff returned by each arm is small relative to the maximum
possible payoff. Building on Chernoff Interval Estimation we presented an algo-
rithm, Threshold Ascent, that solves the max k-armed bandit problem without
making strong assumptions about the payoff distributions. We demonstrated the
effectiveness of Threshold Ascent on the problem of selecting among randomized
priority dispatching rules for the RCPSP/max.

Acknowledgment. This work was sponsored in part by the National Science
Foundation under contract #9900298 and the CMU Robotics Institute.

References

1. Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. Finite-time analysis of the
multiarmed bandit problem. Machine Learning, 47:235-256, 2002a.

2. Peter Auer, Nicolo Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The
nonstochastic multiarmed bandit problem. STAM Journal on Computing, 32(1):48—
77, 2002b.

3. Donald. A. Berry and Bert Fristedt. Bandit Problems: Sequential Allocation of
Ezperiments. Chapman and Hall, London, 1986.

4. Vincent A. Cicirello and Stephen F. Smith. Heuristic selection for stochastic search
optimization: Modeling solution quality by extreme value theory. In Proceedings of
the 10th International Conference on Principles and Practice of Constraint Pro-
gramming, pages 197-211, 2004.

5. Vincent A. Cicirello and Stephen F. Smith. The max k-armed bandit: A new model
of exploration applied to search heuristic selection. In Proceedings of the Twentieth
National Conference on Artificial Intelligence, pages 1355-1361, 2005.

6. Stuart Coles. An Introduction to Statistical Modeling of Extreme Values. Springer-
Verlag, London, 2001.

7. Leslie P. Kaelbling. Learning in Embedded Systems. The MIT Press, Cambridge,
MA, 1993.

8. Tze Leung Lai. Adaptive treatment allocation and the multi-armed bandit prob-
lem. The Annals of Statistics, 15(3):1091-1114, 1987.

9. Rolf H. Md&hring, Andreas S. Schulz, Frederik Stork, and Marc Uetz. Solving
project scheduling problems by minimum cut computations. Management Science,
49(3):330-350, 2003.

10. Klaus Neumann, Christoph Schwindt, and Jiirgen Zimmerman. Project Scheduling
with Time Windows and Scarce Resources. Springer-Verlag, 2002.

11. Herbert Robbins. Some aspects of sequential design of experiments. Bulletin of
the American Mathematical Society, 58:527-535, 1952.

12. C. Schwindt. Generation of resource—constrained project scheduling problems with
minimal and maximal time lags. Technical Report WIOR-489, Universitiat Karl-
sruhe, 1996.

13. Matthew J. Streeter and Stephen F. Smith. An asymptotically optimal algorithm
for the max k-armed bandit problem. In Proceedings of the Twenty-First National
Conference on Artificial Intelligence, pages 135-142, 2006.

