
Restart Schedules for Ensembles of Problem Instances

Matthew Streeter Daniel Golovin Stephen F. Smith
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213
{matts,dgolovin,sfs}@cs.cmu.edu

Abstract

The mean running time of a Las Vegas algorithm can often
be dramatically reduced by periodically restarting it with a
fresh random seed. The optimal restart schedule depends on
the Las Vegas algorithm’s run length distribution, which in
general is not known in advance and may differ across prob-
lem instances. We consider the problem of selecting a single
restart schedule to use in solving each instance in a set of
instances. We present offline algorithms for computing an
(approximately) optimal restart schedule given knowledge of
each instance’s run length distribution, generalization bounds
for learning a restart schedule from training data, and online
algorithms for selecting a restart schedule adaptively as new
problem instances are encountered.

Introduction
Previous work has shown that the mean running time of a
Las Vegas algorithm can often be reduced by periodically
restarting the algorithm according to some schedule. Indeed,
solvers based on chronological backtracking often exhibit
heavy-tailed run length distributions, and restarts can yield
order-of-magnitude improvements in performance (Gomes,
Selman, & Kautz 1998).

In this paper we consider the following online problem.
We are given a Las Vegas algorithmA, which takes as in-
put an instancex of some decision problem and returns a
(provably correct) “yes” or “no” answer, but whose running
time T (x) is a random variable. We are then fed, one at
a time, a sequence〈x1, x2, . . . , xn〉 of problem instances to
solve (note that the distribution ofT (xi) may be different for
different instancesxi). We solve each instance by running
A and periodically restarting it according to some schedule,
stopping as soon as we obtain an answer. Arestart schedule
is an infinite sequenceS = 〈t1, t2, . . .〉 of positive integers,
whose meaning is “runA for t1 time units; if this does not
yield a solution then restartA and run fort2 time units, . . . ”.
Our goal is to (adaptively) select restart schedules so as to
minimize the total time required to solve alln instances.

In the special case whenn = 1 (and no prior information
aboutA or the problem instancex1 is available), a near-
optimal solution to this problem was given in a paper by
Luby et al. (1993). Specifically, their paper gave a universal

Copyright c© 2007, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

restart schedule that runs in expected timeO(` log `), where
` is the expected time required by an optimal schedule for the
pair (A, x1). They further showed that any restart schedule
requires expected timeΩ(` log `) for some pair(A, x1), so
that this guarantee is optimal to within constant factors.

For the more realistic casen > 1, however, much less is
available in the way of theoretical results. Previous work
either assumed that the Las Vegas algorithm’s run length
distribution is the same on each problem instance, or that
it is one ofk known distributions for some smallk. In this
paper we consider the problem of selecting restart sched-
ules in full generality, where the Las Vegas algorithm may
exhibit a different run length distribution on each instance.
We address this problem in three settings: offline, learning-
theoretic, and online, and in each setting we provide new
theoretical guarantees. We demonstrate the power of our
techniques experimentally on a logistics planning domain.

Motivations
To appreciate the relevance of this online problem, consider
the two run length distributions depicted in Figure 1. Fig-
ure 1 shows the run length distribution of the SAT solver
satz-rand on two Boolean formulae created by running a
state-of-the-art planning algorithm, SATPLAN, on a logis-
tics planning benchmark. To find a provably minimum-
length plan, SATPLAN creates a sequence of Boolean for-
mulaeσ1, σ2, . . ., whereσi is satisfiable if and only if there
exists a feasible plan of length≤ i. In this case the minimum
plan length is 14. When run on the (satisfiable) formula
σ14, satz-rand exhibits a heavy-tailed run length distribution.
There is about a 20% chance of solving the problem after
running for 2 seconds, but also a 20% chance that a run will
not terminate after having run for 1000 seconds. Restarting
the solver every 2 seconds reduces the mean run length by
more than an order of magnitude. In contrast, when satz-
rand is run on the (unsatisfiable) instanceσ13, over 99% of
the runs take at least 19 seconds, so the same restart pol-
icy would be ineffective. Restarts are still beneficial on this
instance, however; restarting every 45 seconds reduces the
mean run length by at least a factor of 1.5. Of course, when
using a randomized SAT solver to solve a given formula for
the first time one does not know its run length distribution
on that formula, and thus one must select a restart schedule
based on experience with previously-solved formulae.

satz-rand running on logistics.d (length 14)

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

time (s)

P
r[

ru
n

 n
o
t

fi
n

is
h

e
d

]

satz-rand running on logistics.d (length 13)

0

0.2

0.4

0.6

0.8

1

0.1 1 10 100 1000

time (s)

P
r[

ru
n

 n
o
t

fi
n

is
h

e
d

]

Figure 1: Run length distribution of satz-rand on two formu-
lae created by SATPLAN in solving the logistics planning
instance logistics.d (Gomes, Selman, & Kautz 1998). Each
curve was estimated using 150 independent runs, and run
lengths were capped at 1000 seconds.

Related Work
In the early 1990s, at least two papers studied the problem of
selecting a restart schedule to use in solving asingleproblem
instance, given no prior knowledge of the algorithm’s run
length distribution (this setting corresponds to the casen =
1 in our framework). The main results are summarized in the
following theorem proved by Lubyet al.(1993). HereTS(x)
is a random variable equal to the time required to solvex
when runningA according to restart scheduleS.

Theorem 1 (Luby et al. , 1993).
1. For any instancex, the scheduleS that minimizes

E[TS(x)] is a uniform restart schedule of the form
〈t∗, t∗, . . . , t∗〉.

2. Let` = minS E[TS(x)]. The universal restart schedule

Suniv = 〈1, 1, 2, 1, 1, 2, 4, 1, 1, 2, 1, 1, 2, 4, 8, . . .〉
hasE[TSuniv

(x)] = O(` log `).
3. For any scheduleS and anỳ > 0, it is possible to define a

distribution ofT (x) such thatE[TS(x)] ≥ 1
8` log2 ` (i.e.,

the worst-case performance ofSuniv is optimal to within
constant factors).

Alt et al.(1996) gave related results, with a focus on min-
imizing tail probabilities rather than expected running time.

In the late 1990s, there was a renewed interest in restart
schedules due to a paper by Gomeset al. (1998), which

demonstrated that (then) state-of-the-art solvers for Boolean
satisfiability and constraint satisfaction could be dramati-
cally improved by randomizing the solver’s decision-making
heuristics and running the randomized solver with an ap-
propriate restart schedule. In one experiment, their paper
took a deterministic SAT solver called satz and created a ver-
sion called satz-rand with a randomized heuristic for select-
ing which variable to branch on at each node in the search
tree. They found that, on certain problem instances, satz-
rand exhibited a heavy-tailed run length distribution. By
periodically restarting it they obtained order-of-magnitude
improvements in running time over both satz-rand (without
restarts) and satz, the original deterministic solver. Their
paper also demonstrated the benefit of randomization and
restart for a state-of-the-art constraint solver.

One limitation of Theorem 1 is that it is “all or nothing”: it
either assumes complete knowledge of the run length distri-
bution (in which case a uniform restart schedule is optimal)
or no knowledge at all (in which case the universal schedule
is optimal to within constant factors). Several papers have
considered the case in which partial but not complete knowl-
edge of the run length distribution is available. Ruanet al.
(2002) consider the case in which each run length distribu-
tion is one ofk known distributions, and give a dynamic pro-
gramming algorithm for computing an optimal restart sched-
ule. The running time of their algorithm is exponential ink,
and thus it is practical only whenk is small (in the paper
the algorithm is described fork = 2). Kautzet al. (2002)
considered the case in which, after running for some fixed
amount of time, one observes a feature that gives the distri-
bution of that run’s length.

A recent paper by Gagliolo & Schmidhuber (2007) con-
sidered the problem of selecting restart schedules online in
order to solve a sequence of problem instances as quickly as
possible. Their paper treats the schedule selection problem
as a 2-armed bandit problem, where one of the arms runs
Luby’s universal schedule and the other arm runs a sched-
ule designed to exploit the empirical run length distribution
of the instances encountered so far. Their strategy was de-
signed to work well in the case where each instance has a
similar run length distribution.

Although the focus of this paper is on restarting a single
Las Vegas algorithmA, our results extend naturally to the
case when we have access to a set{A1,A2, . . . ,Ak} of Las
Vegas algorithms and may choose among them each time we
restart. In a companion paper (Streeter, Golovin, & Smith
2007b) we consider the case of multiple heuristics in more
detail.

Preliminaries
As discussed in the introduction, we consider running a sin-
gle Las Vegas algorithmA, which takes as input a problem
instancex and a random seeds ∈ {0, 1}∞. When run on
a particular problem instance,A always returns a (provably
correct) “yes” or “no” answer, but the time it requires de-
pends on the random seed. The random variableT (x) equals
the time thatA runs for before returning an answer. We as-
sumeT (x) is always a positive integer.

A restart scheduleis an infinite sequence of positive in-
tegers〈t1, t2, t3, . . .〉 whose meaning is “runA for t1 time
units; if it does not terminate then restart and run fort2 time
units, . . . ”. We denote bySrs the set of all restart sched-
ules. For any scheduleS ∈ Srs, the random variableTS(x)
equals the time thatS runs for before terminating.

We assume a boundB on the time a schedule is allowed
to run. The cost associated with running scheduleS on in-
stancexi is ci(S) ≡ E[min{B, TS(xi)}].

Profiles

The profile PS(t) lists, in descending order, the lengths
of the runs that restart scheduleS has performed after
it has been run fort time units (without finding a solu-
tion). For example, ifS is the geometric restart sched-
ule 〈1, 2, 4, 8, 16, . . .〉 thenPS(3) = 〈2, 1〉 andPS(6) =
〈3, 2, 1〉 (where at time 6 the current run of length 4 is only
3
4 completed).

Overloading notation, for any profileP = 〈τ1, τ2, . . . , τk〉
let ci(P) =

∏k
j=1 P[T (xi) > τj]. Thusci(PS(t)) equals

the probability thatS fails to find a solution after running
for t time steps. By linearity of expectation,

ci(S) =
B−1∑
t=0

ci(PS(t)) . (1)

We refer to the quantity
∑k

j=1 τj as thesizeof P.

Shortest path formulation

For any setS of schedules, define theprofile spanof S
as P+(S) = {PS(t) : S ∈ S, 0 ≤ t < B}. The
profile graphG(S) is defined as follows. The vertex set
is P+(S) ∪ {v∗}. The edges are defined by the follow-
ing rule: for any restart scheduleS ∈ S, the vertices
〈PS(0),PS(1),PS(2), . . .PS(B − 1), v∗〉 form a directed
path in the graph. The weight assigned to the directed edge
(P, v) is

∑n
i=1 ci(P). Using (1), we have that for any

scheduleS, the weight assigned to the corresponding path
is
∑n

i=1 ci(S). This yields the following lemma.

Lemma 1. For any setS of restart schedules, the schedule
S∗ = arg minS∈S

∑n
i=1 ci(S) may be found by computing

a shortest path fromv0 to v∗ in G(S), wherev0 = 〈〉 is the
empty profile.

α-Regularity

For anyα > 1, let Zα = {bαic : i ∈ Z+} be the set of
integers that are powers ofα rounded down to the nearest in-
teger. We say that a profile〈τ1, τ2, . . . , τk〉 is α-regular if all
τj are inZα and if, for eachτj , the number of runs of length
τj is also a member ofZα. For example, the profiles〈4, 1, 1〉
and〈4, 2, 1, 1, 1, 1〉 are 2-regular but the profiles〈3, 1〉 and
〈2, 1, 1, 1〉 are not.

We say that a restart scheduleS = 〈t1, t2, t3, . . .〉 is α-
regular if tj ∈ Zα for all j and if, whenevertj 6= tj+1, the
number of runs of lengthtj performed so far is inZα (i.e.,
|{j′ ≤ j : tj′ = tj}| ∈ Zα). For example, the geometric

restart schedule〈1, 2, 4, 8, 16, . . .〉 is 2-regular, as is the fol-
lowing slightly modified version of Luby’s universal sched-
ule: 〈1, 1, 2, 1, 1, 2, 4, 1, 1, 1, 1, 2, 2, 4, 8, . . .〉; however, the
schedule〈1, 2, 1, 2, 1, 2, . . .〉 is not. Equivalently,S is α-
regular if, whenevertj 6= tj+1, the profilePS(

∑j
j′=1 tj′) is

α-regular. We denote bySα
rs the set of allα-regular sched-

ules.
The following lemma (proved in Appendix A) shows that

an arbitrary schedule can be “rounded up” to anα-regular
schedule while introducing at most a factorα2 overhead.

Lemma 2. For any scheduleS and α > 1, there exists
an α-regular scheduleSα such that, for any instancex,
E[TS(x)] ≤ α2E[TSα(x)].

Offline Algorithms
In the offline setting we are given as input the values of
pi(t) ≡ P[T (xi) ≤ t] for all i (1 ≤ i ≤ n) and t
(1 ≤ t ≤ B), and we wish to compute the restart sched-
ule

S∗ = arg min
S∈Srs

n∑
i=1

ci(S) .

Although we have not been able to determine whether this
problem is NP-hard, we do believe that designing an algo-
rithm to solve it is non-trivial. One simple idea that does
not work is to compute an optimal restart schedule for the
averaged distributionp(t) = 1

n

∑n
i=1 pi(t). To see the flaw

in this idea, consider the following example withn = 2:
T (x1) = 1 with probability 1

2 and is 1000 with probabil-
ity 1

2 , while T (x2) = 1000 with probability 1. The optimal
schedule for the averaged distribution is the uniform sched-
ule 〈1, 1, 1, . . .〉, however this scheduleneversolvesx2.

A quasi-polynomial time approximation scheme
Our first approximation algorithm simply combines Lem-
mas 1 and 2 in the natural way, namely it obtains an
α2-approximation to the optimal restart schedule by com-
puting a shortest path in the profile graphG(Sα

rs). To
bound the time complexity, we show that the number of
α-regular profiles with size< B is O((logα B)logα B) =
O(Blogα logα B), then argue that the algorithm can be imple-
mented usingO(n logα B) time perα-regular profile (for a
formal proof, see Appendix A).

Theorem 2. There exists an algorithm that runs in
time O(n(logα B)Blogα logα B) and returns an α2-
approximation to the optimal restart schedule.

A greedy approximation algorithm
Our second approximation algorithm runs in polynomial
time and returns a 4-approximation to the optimal sched-
ule. The algorithm proceeds in a series of epochs, each of
which selects a restart threshold to add to the schedule. At
the beginning of epochz, ri equals the probability that in-
stancexi remains unsolved after performing runs of lengths
t1, t2, . . . , tz−1. The thresholdtz is selected so as to maxi-
mize the expected number of additional instances solved per
unit time.

Greedy algorithm for constructing restart schedules:
1. Initializeri = 1 ∀i, 1 ≤ i ≤ n.
2. Forz from 1 toB:

(a) Find the thresholdtz ∈ {1, 2, . . . , B} that max-
imizes

1
tz

n∑
i=1

ripi(tz) .

(b) Setri = ri · (1− pi(tz)) ∀i.
3. Return the schedule〈t1, t2, . . . tB〉.

The performance of the algorithm is summarized in the
following theorem, which is proved in Appendix B (Streeter,
Golovin, & Smith 2007a).

Theorem 3. The greedy approximation algorithm returns a
4-approximation to the optimal restart schedule.

As written, the greedy algorithm requiresO(B) time per
epoch. If each thresholdtz is restricted to be a power ofα,
then each epoch requires timeO(logα B) and we obtain a
4α-approximation (as the proof of Theorem 3 shows).

Learning Restart Schedules
To apply the offline algorithms of the previous section in
practice, we might collect a set of problem instances to use
as training data, compute an (approximately) optimal restart
schedule for the training instances, and then use this sched-
ule to solve additional test instances. Under the assump-
tion that the training and test instances are drawn (indepen-
dently) from a fixed probability distribution, we would then
like to know how much training data is required so that (with
high probability) our schedule performs nearly as well on
test data as it did on the training data. In our setting two
distinct questions arise: how many training instances do we
need, and how many runs must we perform on each train-
ing instance in order to estimate its run length distribution to
sufficient accuracy? We deal with each question separately
in the following subsections.

Estimating profile costs

In this section our objective is the following: given an in-
stancexi, we would like to spend as little time as pos-
sible runningA on xi in order to obtain a function̄ci :
P+(Srs)→ [0, 1] with the following property: for any pro-
file P ∈ P+(Srs), E[c̄i(P)] = ci(P) (i.e., c̄i(P) is an unbi-
ased estimate ofci(P)).

To obtain such a function, we will performB independent
runs ofA onxi, where thejth run is performed with a time
limit of B

j (so the total running time is at most
∑B

j=1
B
j =

O(B log B)). Let Tj be theactual time required by thejth

run (whereas we only have knowledge ofmin{Tj ,
B
j }), and

call the tupleT = 〈T1, T2, . . . , TB〉 a trace. For any profile
P = 〈τ1, τ2, . . . , τk〉, we say thatT enclosesP if Tj > τj

for all j (see Figure 2). Our estimate is

c̄i(P) =
{

1 if T enclosesP
0 otherwise.

The estimate is unbiased becauseE[c̄i(P)] =
∏k

j=1 P[Tj >

τj] = ci(P). Furthermore, the estimate can be computed
given only knowledge ofmin{Tj ,

B
j }. This is true be-

cause ifP = 〈τ1, τ2, . . . , τk〉 is a profile with size< B,
then for eachj we haveτj < B

j (recall that the sequence
〈τ1, τ2, . . . τk〉 is non-increasing by definition).

run index

run
length

0

1

2

3

4

5

6
B

B/2

B/3
B/4

B/5
B/6

T1

T2

T3

T4

T5

T6

!1

!2

Figure 2: An illustration of our estimation procedure.
The profile 〈τ1, τ2〉 (dots) is enclosed by the trace
〈T1, T2, T3, T4, T5, T6〉.

Although the estimate just described is unbiased, it is
somewhat crude in that the estimate ofci(P) (which is a
probability) is always 0 or 1. The following lemma (which
is proved in Appendix A) gives a more refined unbiased es-
timate which we will use in our experimental evaluation. As
in the previous paragraph, computing the estimate only re-
quires knowledge ofmin{Tj ,

B
j } for eachj.

Lemma 3. For any profileP = 〈τ1, τ2, . . . , τk〉 of size< B,
defineLj(P) = {j′ : 1 ≤ j′ ≤ B, B

j′ > τj}. Then the
quantity

c̄i(P) =
k∏

j=1

|{j′ ∈ Lj(P) : Tj′ > τj}| − j + 1
|Lj(P)| − j + 1

is an unbiased estimate ofci(P) (i.e.,E[c̄i(P)] = ci(P)).

Sample complexity bounds
Let {x1, x2, . . . , xm} be a set ofm training instances drawn
independently from some distribution. LetS be an arbitrary
set of schedules. For any scheduleS ∈ S, let c(S) be the
expected cost ofS on a random instance drawn from the
same distribution, and similarly for any profileP let c(P)
be its expected cost on a random instance.

Suppose we runA for O(B log B) time on each of the
m training instances to obtain functions̄c1, c̄2, . . . , c̄m, as
per the discussion in the previous section. Because the esti-
mates are unbiased, we haveE[c̄i(P)] = E[ci(P)] = c(P).
For any profileP (of size< B), let c̄(P) = 1

m

∑m
i=1 c̄i(P).

Then c̄(P) is the average ofm independent identically dis-
tributed random variables, each of which has range[0, 1] and
expected valuec(P). Thus by Hoeffding’s inequality,

P [|c̄(P)− c(P)| ≥ ε] ≤ 2 exp
(
−2mε2

)
.

It follows that for anyδ′ > 0, m = O(1
ε2 ln 1

δ′) training
instances are required to ensureP [|c̄(P)− c(P)| ≥ ε] < δ′.

For any scheduleS, definec̄i(S) =
∑B−1

t=0 c̄i(PS(t)), in
analogy to (1). Using (1), we have

max
S∈S
|c̄(S)− c(S)| ≤ B · max

P∈P+(S)
|c̄(P)− c(P)| .

Settingδ′ = δ
|P+(S)| and using the union bound yields the

following theorem.

Theorem 4. If the number of training instances satisfies

m ≥ m0(ε, δ,S) = O
(

1
ε2 ln |P+(S)|

δ

)
, the inequality

max
S∈S
|c̄(S)− c(S)| ≤ εB

holds with probability at least1− δ.

Using Theorem 4, we can obtain sample complex-
ity bounds for setsS of particular interest by bounding
ln |P+(S)|. We first considerSrs. Let p(m) denote the
number of profiles of size exactlym, so |P+(Srs)| =∑B−1

m=0 p(m). Thenp(m) is the famouspartition function
that counts the number of unordered partitions ofm, and
Hardy & Ramanujan (1918) proved thatln p(m) = Θ(

√
m).

Thusln |P+(Srs)| = Θ(
√

B).
We next considerSα

rs. Let N denote the number
of schedules inSα

rs with distinct behavior during the
first B time steps. It is not hard to see thatN =
O((logα B)2 logα B), and it is trivially true that|P+(Sα

rs)| ≤
BN , so ln |P+(Sα

rs)| = O(logα B log logα B). Thus we
have the following corollary.

Corollary 1. Let the functionm0(ε, δ,S) be defined as in

Theorem 4. Thenm0(ε, δ,Srs) = O
(

1
ε2

(√
B + ln 1

δ

))
andm0(ε, δ,Sα

rs) = O
(

1
ε2

(
logα B(log logα B) + ln 1

δ

))
.

Corollary 1 and Lemma 2 suggest the following proce-
dure: compute an (approximately) optimal restart schedule
for them training instances (using any algorithm or heuris-
tic whatsoever) then round the schedule up to anα-regular
schedule (introducing at most a factorα2 overhead), where
α is chosen so that Corollary 1 applies for some desiredε
andδ. The rounding step prevents overfitting, and its over-
head is fairly low.

Online Strategies
One limitation of Theorem 4 is that it requires us to draw
training (and test) instances independently at random from
a fixed probability distribution. In practice, the distribution
might change over time and successive instances might not
be independent. To illustrate this point, consider again the
example of using SATPLAN to solve one or more planning
problems. To solve a particular planning problem, SAT-
PLAN generates a sequence〈σ1, σ2, . . .〉 of Boolean formu-
lae that are not at all independent. To optimize SATPLAN’s
performance, we would like to learn a restart schedule for
the underlying SAT solver on-the-fly, without making strong
assumptions about the sequence of formulae that are fed to
it.

In this section we consider the problem of selecting restart
schedules in a worst-case online setting. In this setting we
are given as input a setS of restart schedules. We are then
fed, one at a time, a sequence〈x1, x2, . . . , xn〉 of problem
instances to solve. Prior to receiving instancexi, we must
select a restart scheduleSi ∈ S. We then useSi to solvexi

and incur costCi equal to the time we spend runningA on
xi. Our regretat the end ofn rounds is equal to

1
n

(
E

[
n∑

i=1

Ci

]
−min

S∈S

n∑
i=1

ci(S)

)
(2)

where the expectation is over two sources of randomness:
the random bits supplied toA, but also any random bits
used by our schedule-selection strategy. That is, regret is
1
n times the difference between the expected total cost in-
curred by our strategy and that of the optimal schedule for
the (unknown) set ofn instances. A strategy’s worst-case re-
gret is the maximum value of (2) over all instance sequences
of lengthn (i.e., over all sequences ofn run length distribu-
tions). Ano-regret strategyhas worst-case regret that iso(1)
as a function ofn.

Assume for the moment that|S| is small enough that we
would not mind usingO(|S|) time or space for decision-
making. In this case one option is to treat our online prob-
lem as an instance of the “nonstochastic multiarmed bandit
problem” and use theExp3 algorithm of Aueret al. (2002)

to obtain regretO
(
B
√

1
n |S|

)
= o(1).

To obtain regret bounds with a better dependence on|S|,
we use a version of the “label-efficient forecaster” of Cesa-
Bianchi et al. (2005). Applied to our online problem, this
strategy behaves as follows. Given an instancexi, with
probability γ the strategyexploresby computing (an unbi-
ased estimate of)ci(S) for eachS ∈ S. As per the dis-
cussion leading up to Lemma 3, we can accomplish each
exploration step by runningA for time at most

∑B
j=1

B
j =

O(B log B), independent of|S|. With probability 1 − γ,
the strategyexploitsby selecting a schedule at random from
a distribution in which scheduleS is assigned probability
proportional toexp(−ηc̄(S)), where c̄(S) is an unbiased
estimate of

∑i−1
l=1 cl(S) andη is a learning rate parameter.

Adapting Theorem 1 of Cesa-Bianchiet al.(2005) to our set-
ting yields the following regret bound, which depends only
logarithmically on|S|.
Theorem 5. The label-efficient forecaster with learning

rate η =
(

ln |S|
n
√

2HB

)2/3

and exploration probabilityγ =√
η

2HB
has regret at most2B

(
2HB ln |S|

n

)1/3

, whereHB ≡∑B
j=1

1
j = O(log B).

Handling large |S|
A näıve implementation of the label-efficient forecaster re-
quiresO(|S|) time and space for decision-making on each
instance. To reduce the decision-making time, we again ex-
ploit the shortest path formulation. Specifically, we can use
the dynamic programming equations described by Györgyet

al. (2006) for theonline shortest pathsproblem. Using this
technique, the total decision-making time (overn instances)
is of the same order as the time required to solve the offline
shortest path problem (e.g., forS = Sα

rs, the time complex-
ity is given in Theorem 2).

Experimental Evaluation
Following Gagliolo & Schmidhuber (2007), we evaluate our
techniques by using them to construct restart schedules for
the SAT solver satz-rand. We note that satz-rand is at this
point a relatively old SAT solver, however it has the follow-
ing key feature: successive runs of satz-rand on the same
problem instance areindependent, as required by our the-
oretical results. More modern solvers (e.g., MiniSat) also
make use of restarts but maintain a repository of conflict
clauses that is shared among successive runs on the same
instance, violating this independence assumption.

To generate a set of benchmark formulae, we use the
blackboxinstance generator to generate 80 random logis-
tics planning problems, using the same parameters that were
used to generate the instance logistics.d from the paper by
Gomeset al.(1998). We then used SATPLAN to find an op-
timal plan for each instance, and saved the Boolean formulae
it generated. This yielded a total of 242 Boolean formulae.1

We then performedB = 1000 runs of satz-rand on each for-
mula, where thejth run was performed with a time limit of
B
j as per the discussion leading up to Theorem 4.

We evaluated (a) the schedule returned by the greedy ap-
proximation algorithm, (b) uniform schedules of the form
〈t, t, t, . . .〉 for eacht ∈ {1, 2, . . . , B}; (c) geometric restart
schedules of the form〈β0, β1, β2, . . .〉 for eachβ ∈ {1.1k :
1 ≤ k ≤ dlog1.1 Be} and (d) Luby’s universal restart sched-
ule. We estimated the expected CPU time required by each
schedule using the function̄c described in Lemma 3.

Table 1: Performance of various restart schedules (cross-
validation results are parenthesized).

Restart schedule Avg. CPU (s)
Greedy schedule 21.9 (22.8)
Best geometric 23.9
Best uniform 33.9
Luby’s universal schedule 37.2
No restarts 74.1

Table 1 gives the average CPU time required by each of
the schedules we evaluated. The schedule returned by the
greedy approximation algorithm had the smallest mean run-
ning time. The greedy schedule was 1.7 times faster than
Luby’s universal schedule, 1.5 times faster than the best uni-
form schedule (which used thresholdt = 85), and 1.1 times
faster than the best geometric schedule (which setβ ≈ 1.6).
The average CPU time for a schedule that performed no

1The number of generated formulae is less than the sum of
the minimum plan lengths, because SATPLAN can trivially reject
some plan lengths without invoking a SAT solver.

restarts was about 3.4 times that of the greedy schedule, but
is likely to be much worse due to the fact that run lengths
were capped at 1000 seconds.

Examining Table 1, one may be concerned that the greedy
algorithm was run using the same estimated run length dis-
tributions that were later used to estimate its expected CPU
time. To address the possibility of overfitting, we also
evaluated the greedy algorithm using leave-one-out cross-
validation.2 The estimated mean CPU time increased by
about 4% under leave-one-out cross-validation.

Conclusions
We addressed the problem of selecting a schedule for restart-
ing a Las Vegas algorithm in order to minimize the time re-
quired to solve each instance in a set of instances. We con-
sidered the schedule selection problem in offline, learning-
theoretic, and online settings, and derived new theoretical
results in each setting. Experimentally, we used one of our
offline algorithms to compute an improved restart schedule
for running satz-rand on Boolean formulae derived from lo-
gistics planning problems.

Acknowledgment. This work was supported in part by
NSF ITR grants CCR-0122581 and IIS-0121678 and by
DARPA under Contract #FA8750-05-C-0033.

References
Alt, H.; Guibas, L.; Mehlhorn, K.; Karp, R.; and Wigder-
son, A. 1996. A method for obtaining randomized
algorithms with small tail probabilities. Algorithmica
16(4/5):543–547.
Auer, P.; Cesa-Bianchi, N.; Freund, Y.; and Schapire,
R. E. 2002. The nonstochastic multiarmed bandit prob-
lem. SIAM Journal on Computing32(1):48–77.
Cesa-Bianchi, N.; Lugosi, G.; and Stoltz, G. 2005. Mini-
mizing regret with label efficient prediction.IEEE Trans-
actions on Information Theory51:2152–2162.
Gagliolo, M., and Schmidhuber, J. 2007. Learning
restart strategies. InProceedings of the Twentieth Interna-
tional Joint Conference on Artificial Intelligence (IJCAI-
07), 792–797.
Gomes, C.; Selman, B.; and Kautz, H. 1998. Boosting
combinatorial search through randomization. InProceed-
ings of the Fifteenth National Conference on Artificial In-
telligence (AAAI-98), 431–437.
György, A., and Ottucśak, G. 2006. Adaptive routing using
expert advice.The Computer Journal49(2):180–189.
Hardy, G. H., and Ramanujan, S. 1918. Asymptotic for-
mulae in combinatory analysis.Proceedings of the London
Mathematical Society17:75–115.
Kautz, H.; Ruan, Y.; and Horvitz, E. 2002. Dynamic
restarts. InProceedings of the Eighteenth National Con-
ference on Artificial Intelligence, 674–681.

2Leave-one-out cross-validation is performed as follows: for
each instance, we set that instance aside and run the greedy algo-
rithm on the remaining data to obtain a schedule to use in solving
that instance.

Luby, M.; Sinclair, A.; and Zuckerman, D. 1993. Optimal
speedup of Las Vegas algorithms.Information Processing
Letters47:173–180.
Ruan, Y.; Horvitz, E.; and Kautz, H. 2002. Restart poli-
cies with dependence among runs: A dynamic program-
ming approach. InProceedings of the Eighth International
Conference on Principles and Practice of Constraint Pro-
gramming, 573–586.
Streeter, M.; Golovin, D.; and Smith, S. F. 2007a. Ap-
pendix B: Proof of theorem 3. Available athttp://www.
cs.cmu.edu/˜matts/aaai07_appendixB.pdf .
Streeter, M.; Golovin, D.; and Smith, S. F. 2007b.
Combining multiple heuristics online. InProceedings of
the Twenty-Second Conference on Artificial Intelligence
(AAAI-07).

Appendix A: Proofs
Lemma 2. For any scheduleS and α > 1, there exists
an α-regular scheduleSα such that, for any instancex,
E[TS(x)] ≤ α2E[TSα

(x)].

Proof. For any profileP = 〈τ1, τ2, . . . , τk〉, let dPe be the
α-regular profile obtained by rounding eachτj up to the
nearest member ofZα, then rounding the number of runs
of each length up to the nearest member ofZα. For example
if α = 2 andP = 〈4, 3, 3, 2〉, thendPe = 〈4, 4, 4, 4, 2〉.
Note that the size ofdPe is at mostα2 times the size ofP.

Consider the set{t : dPS(t)e 6= dPS(t− 1)e}, and let
〈t∗1, t∗2, t∗3 . . .〉 be a list of its elements in ascending order.
Let Sα be the uniqueα-regular schedule that passes through
the sequence of profiles

dPS(t∗1)e , dPS(t∗2)e , dPS(t∗3)e , . . .

We claim that for any timet,

P[TS(x) ≤ t] ≤ P[TSα
(x) ≤ α2t] . (3)

This follows from the fact thatSα passes through the profile
dPS(t)e, which has size at mostα2t. Thus by timeα2t, Sα

has done all the work thatS has done at timet and more. The
fact that (3) holds for allt impliesE[TS(x)] ≤ α2E[TSα(x)].

Theorem 2. There exists an algorithm that runs in
time O(n(logα B)Blogα logα B) and returns an α2-
approximation to the optimal restart schedule.

Proof. Our algorithm obtains anα2-approximation to the
optimal restart schedule by finding (a truncated version of)
the optimal schedule inSα

rs, using a shortest path algorithm
on a suitable graphG = (V,E). The vertices ofG consist
of all α-regular profiles of size at mostB, plus an additional
vertexv∗. For each profileP ∈ V , and eachr ∈ Zα∩[1, B),
we add an edge fromP to the profileP ′ obtained fromP
by increasing the number of runs of lengthr in P to the
next largest value inZα, assumingP ′ ∈ V . For exam-
ple, withα = 3 there would be an edge(〈3, 1〉, 〈3, 3, 3, 1〉)
corresponding tor = 3. If the profileP ′ derived this way
has size greater thanB, we add an edge(P, v∗) instead of

(P,P ′). Each edge(P,P ′) is weighted to represent the ex-
pected cost incurred while executing the runs necessary to
reach profileP ′ fromP. Each edge of the form(P, v∗) de-
rived from some pair of profiles(P,P ′) will be weighted
to represent the expected cost incurred while executing runs
necessary to reach profileP ′ from P if we stop execution
afterB− size(P) steps. We then find the shortest path from
the empty profile tov∗, and output the corresponding sched-
ule.

If we precompute
∑t

a=1 P[T (xi) > a], for all i and t,
and precomputeP[T (xi) > t]r for all i, t and r, then we
can collectively evalute all the edge weights inO(n) time
per edge. The overall time complexity is dominated by the
time to assign edge weights, which isO(n|E|). Assuming
for simplicity thatB is a power ofα, it is easy to see that
the number ofα-regular profiles of size at mostB is at most
(logα B)logα B = Blogα logα B and that each profile has at
most(logα B) outgoing edges, which proves the theorem.

Lemma 3. For any profileP = 〈τ1, τ2, . . . , τk〉 of size< B,
defineLj(P) = {j′ : 1 ≤ j′ ≤ B, B

j′ > τj}. Then the
quantity

c̄i(P) =
k∏

j=1

|{j′ ∈ Lj(P) : Tj′ > τj}| − j + 1
|Lj(P)| − j + 1

is an unbiased estimate ofci(P) (i.e.,E[c̄i(P)] = ci(P)).

Proof. Given the traceT = 〈T1, T2, . . . , TB〉, suppose we
construct a new traceT ′ by randomly permuting the ele-
ments ofT using the following procedure (the procedure is
well-defined assuming|Lj(P)| ≥ j for eachj, which fol-
lows from the fact thatτj < B

j if P has size< B):

1. Forj from 1 tok:
• Choose lj uniformly at random from Lj(P) \
{l1, l2, . . . , lj−1}.

2. SetT ′ ← {Tl1 , Tl2 , . . . Tlk}.
Because the indices are arbitrary,P[T ′ enclosesP] =
P[T enclosesP] = ci(P).

On the other hand, it is straightforward to show that the
conditional probabilityP[T ′ enclosesP | T] is exactly the
product series̄ci(P) (the jth factor in the product series is
the probability thatTlj > τj , conditioned on the fact that
Tlh > τh for all h < j).

Thus we have

E[c̄i(P)] = E [P[T ′ enclosesP | T]]

= P[T ′ enclosesP]
= ci(P) .

