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Abstract

We present black-box techniques for learning how to inter-
leave the execution of multiple heuristics in order to improve
average-case performance. In our model, a user is given a set
of heuristics whose only observable behavior is their running
time. Each heuristic can compute a solution to any problem
instance, but its running time varies across instances. The
user solves each instance by interleaving runs of the heuris-
tics according to atask-switching schedule. We present (i)
exact and approximation algorithms for computing an opti-
mal task-switching schedule offline, (ii ) sample complexity
bounds for learning a task-switching schedule from training
data, and (iii ) a no-regret strategy for selecting task-switching
schedules online. We demonstrate the power of our results us-
ing data from recent solver competitions. We outline how to
extend our results to the case in which the heuristics are ran-
domized, and the user may periodically restart each heuristic
with a fresh random seed.

Introduction
Many important computational problems seem unlikely to
admit algorithms with provably good worst-case perfor-
mance, yet must be solved as a matter of practical necessity.
Examples of such problems include Boolean satisfiability,
planning, integer programming, and numerous scheduling
and resource allocation problems. In each of these prob-
lem domains, heuristics have been developed that perform
much better in practice than a worst-case analysis would
guarantee, and there is an active research community work-
ing to develop improved heuristics. Indeed, there are en-
tire conferences devoted to the study of particular problem
domains (e.g., Boolean satisfiability, planning), and annual
solver competitions are held in order to assess the state of
the art and to promote the development of better solvers.

Unfortunately, the behavior of a heuristic on a previously
unseen problem instance is difficult to predict in advance.
The running time of a heuristic may vary greatly across
seemingly similar problem instances or, if the heuristic is
randomized, across multiple runs on a single instance that
use different random seeds (Gomeset al. 2000). For this
reason, after running a heuristic unsuccessfully for some
time one might decide either to restart the heuristic with
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a fresh random seed, or to suspend the execution of that
heuristic and start running a different heuristic instead.

Previous work has shown that combining multiple heuris-
tics into aportfolio can dramatically improve the mean run-
ning time (Huberman, Lukose, & Hogg 1997; Gomes & Sel-
man 2001). A portfolio consists of a set of heuristics that are
run in parallel (or interleaved on a single processor) accord-
ing to some schedule, with all runs being terminated as soon
as one of the heuristics returns a solution. The mean run-
ning time of a portfolio can be much better than that of any
single heuristic, for example if each heuristic has a few rare
instances on which its running time is very large.

Our paper presents new techniques for performing the
schedule-selection step in algorithm portfolio design. In our
model, we are given a pool of heuristics whose only observ-
able behavior is their running time, and a sequence of prob-
lem instances to solve. Our goal is to perform schedule se-
lection in a way that minimizes the total CPU time we spend
on all instances. We consider the schedule selection prob-
lem in offline, learning-theoretic, and online settings, and
provide new theoretical guarantees in each setting.

Our paper focuses on deterministic heuristics (so restarts
play no role). However, we wish to emphasize that our re-
sults extend in interestings way to randomized heuristics, as
we outline at the end of the paper.

Definitions and notation
In our model, we are given a setH = {h1, h2, . . . , hk}
of deterministic heuristics, and a set{x1, x2, . . . , xn} of
instances of some decision problem. Heuristichj , when
run on instancexi, runs for τi,j time units before return-
ing a (provably correct) “yes” or ”no” answer, whereτi,j ∈
{1, 2, . . . , B} ∪ {∞}. We assume that for eachxi, there
is somehj such thatτi,j ≤ B. We may think ofB as the
maximum time we are willing to spend on any single heuris-
tic when solving any particular instance. We solve each in-
stance by interleaving the execution of the heuristics accord-
ing to atask-switching schedule, stopping as soon as one of
the heuristics returns an answer.
Definition (task-switching schedule). A task-switching
scheduleS : Z+ → H specifies, for each integert ≥ 0,
the heuristicS(t) to run from timet to timet + 1.

For any task-switching scheduleS, let ci(S) be the time
required to solvexi when interleaving the execution of the



heuristics according toS. Specifically,ci(S) is the smallest
integert such that, for some heuristichj , S devotesτi,j time
steps tohj during the interval[0, t] (i.e., τi,j = |{t′ < t :
S(t′) = hj}| for somej). We denote bySts the set of all
task-switching schedules. To make the meaning of some of
our results more clear, we letc∗ denote an upper bound on
ci(S) for the instance sequence under consideration (clearly,
c∗ ≤ Bk).

Summary and contributions
In this paper we consider the problem of selecting task-
switching schedules in three different settings:

1. Offline. In the offline setting we are given then by k
matrix τ as input and wish to compute the task-switching
scheduleS∗ = arg minS∈Sts

∑n
i=1 ci(S). We show that

a simple greedy algorithm gives a 4-approximation to the
optimal task-switching schedule and that, for anyα < 4,
computing anα-approximation is NP-hard. We also give
exact and approximation algorithms based on shortest
paths whose running time is exponential as a function of
k (k is the number of heuristics) but is polynomial for any
fixedk.

2. Learning-theoretic. In the learning-theoretic setting we
draw training instances independently at random from a
distribution, compute an optimal task-switching schedule
for the training instances, and then use that schedule to
solve additional test instances drawn from the same dis-
tribution. We give bounds on the number of instances re-
quired to learn a schedule that isprobably approximately
correct.

3. Online. In the online setting we are fed a sequence
〈x1, x2, . . . , xn〉 of instances one at a time and must ob-
tain a solution to each instance before moving on to the
next. We give no-regret schedule-selection strategies both
for thedistributionalonline setting (in which problem in-
stances are drawn from a distribution) and theadversarial
online setting (in which the matrixτ is secretly filled in
by an adversary).

Experimentally, we use data from recent solver competi-
tions to show that task-switching schedules have the poten-
tial to improve the performance of state-of-the-art solvers in
several problem domains.

Related Work
Algorithm portfolios
Our work is closely related to, and shares the same goals as,
previous work onalgorithm portfolios(Huberman, Lukose,
& Hogg 1997; Gomes & Selman 2001). An algorithm port-
folio is a schedule for combining runs of various heuristics.
The schedules considered in previous work simply run each
heuristic in parallel at equal strength and assign each heuris-
tic a fixed restart threshold. Gomeset al. (2001) have ad-
dressed the problem of constructing an optimal algorithm
portfolio offline given knowledge of the run length distribu-
tion of each algorithm, under the assumption that each al-
gorithm has the same run length distribution on all problem
instances.

In this paper we consider a more powerful class of sched-
ules that allow the proportion of CPU time allocated to each
heuristic to change over time. This flexibility requires us to
develop new algorithms even in the offline setting, and even
in the special case when all heuristics are deterministic. Our
paper also gives rigorous results for schedule selection in
the learning-theoretic and online settings, which Gomeset
al. (2001) identified as an important open problem.

Resource-sharing schedules
A recent paper by Sayaget al. (2006) considered the
problem of selecting task-switching schedules and resource-
sharing schedules, both in the offline and learning-theoretic
settings. Aresource-sharing scheduleS : H → [0, 1] spec-
ifies that all heuristics inH are to be run in parallel, with
eachh ∈ H receiving a proportionS(h) of the CPU time.
The primary contribution of their paper was an offline al-
gorithm that computes an optimal resource-sharing sched-
ule in O(nk−1) time. They also discuss anO(nk+1) algo-
rithm for computing optimal task-switching schedules of-
fline. As proved by Sayaget al. (Lemma 1), an optimal
task-switching schedule always performs as good or better
than an optimal resource-sharing schedule. Our main con-
tributions relative to their paper are to give computational
complexity results and a greedy approximation algorithm for
computing an optimal task-switching schedule offline, and
to give a no-regret strategy in the adversarial online setting.
We also give an improved sample complexity bound in the
learning-theoretic setting.

The Offline Setting
We first consider the problem of computing an optimal task-
switching schedule in an offline setting. That is, given ann
by k matrix τ as input, we wish to compute the schedule

S∗ = arg min
S∈Sts

n∑
i=1

ci(S) .

Computational complexity
When the number of heuristicsk is unrestricted, the problem
of computing an optimal task-switching schedule is NP-hard
even to approximate. To see this, consider the special case
B = 1 (so eachτi,j ∈ {1,∞}). In this case, an optimal
task-switching schedule can be represented simply as a per-
mutation of thek heuristics. Viewing each heuristichj as
the set of elements{xi : τi,j = 1}, our goal is to order these
sets from left to right so as to minimize the sum, over all
elementsxi, of the position of the leftmost set that contains
xi. This is exactly themin-sum set coverproblem. For any
α < 4, achieving an approximation ratio ofα for min-sum
set cover is NP-hard (Feige, Lovász, & Tetali 2004). Thus
we have the following theorem.

Theorem 1. For anyα < 4, computing anα-approximation
to the optimal task-switching schedule is NP-hard.

An exact algorithm based on shortest paths
Although computing an optimal task-switching schedule is
NP-hard in general, we might hope to find a polynomial



time algorithm when the number of heuristicsk is small. In
this section we show how to find an optimal task-switching
schedule by computing a shortest path in a graph. The key
is to establish a one-to-one correspondence between task-
switching schedules and paths in a graphG = 〈V,E〉 such
that the following property holds: for each instancexi, we
can define vertex weightswi : V → {0, 1} such that for any
task-switching scheduleS, ci(S) equals the weight assigned
by wi to the path corresponding toS.

The vertices of our graph will be arranged in ak-
dimensional grid, where each vertex has coordinates in
{0, 1, . . . , B}k. The vertex with coordinates〈t1, t2, . . . , tk〉
will correspond to the state of having run each heuristichj

for tj time units so far. There is a directed edge fromu to v
if v can be reached fromu by advancing one unit along some
axis. A task-switching scheduleS corresponds to the path
that starts at grid coordinates〈0, 0, . . . , 0〉 and, on stept of
the path, advances along the axis corresponding to heuristic
S(t − 1). The weightswi are defined as follows: if ver-
tex v has grid coordinates〈t1, t2, . . . , tk〉 thenwi(v) = 1 if
tj < τij for all j; otherwisewi(v) = 0. In other words,
wi assigns weight 1 to vertices that correspond to states
in which instancexi has not yet been solved, and assigns
weight 0 to all other vertices. It is easy to check thatci(S) is
equal to the weight assigned bywi to the path correspond-
ing to S. It follows that the optimal task-switching sched-
ule for instancesx1, x2, . . . , xn is the schedule that corre-
sponds to the shortest path inG (from vertex〈0, 0, . . . , 0〉
to 〈B,B, . . . , B〉) under the weight functionw =

∑n
i=1 wi

(see Figure 1).
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Figure 1: An example set of completion times and the cor-
responding shortest path problem (herek = 2 andB = 4).
The optimal schedule (indicated by the shaded path) runsh2

for one time unit, then runsh1 for four time units, then runs
h2 for three additional time units.

The time required to find an optimal task-switching
schedule using this algorithm is dominated by the time re-
quired to compute the vertex weights, which isO(nk|V |) =
O(nk(B+1)k). We now outline two ways to reduce the time
complexity, leaving the details as an exercise to the reader.

To obtain an α-approximation to the optimal task-
switching schedule, we may restrict our attention to sched-
ules that only suspend a heuristic when the time invested in
that heuristic so far is a power ofα. An optimal schedule

within this restricted set can be found by solving a short-
est path problem on anedge-weighted graph whose vertices
form ak-dimensional grid with sides of lengthdlogα Be+1,
and the time complexity isO(nk(dlogα Be+ 1)k).

If the number of problem instancesn is less thanB, an
optimal schedule can be computed more efficiently by using
the following fact (which can be proved using an interchange
argument):

Fact 1. If t is an integer such thatS∗(t) = hj 6= S∗(t + 1)
and tj is the number of time stepsS∗ devotes tohj during
the interval[0, t], thentj = τi,j for somei.

By exploiting this fact we can reduce the time complexity
to O(knk+1).1

Theorem 2. An optimal task-switching schedule can
be computed in timeO(nk · min{B + 1, n}k), and
an α-approximation can be computed in timeO(nk ·
min{dlogα Be+ 1, n}k).

A greedy approximation algorithm
In this section we give a greedy algorithm that runs in time
poly(n, k) and produces a schedule whose total cost is at
most 4 times optimal (by Theorem 1, achieving a better ap-
proximation ratio is NP-hard). Our algorithm and its analy-
sis are generalizations of results of Feigeet al. (2004).

The greedy algorithm can be described as following the
rule “greedily maximize the number of instances solved
per unit time”. More specifically, the algorithm proceeds
in a series of epochs. At the beginning of epochz, Rz

represents the set of instances that have not been solved
by the schedule-so-far (initiallyz = 1 andR1 contains all
instances). The greedy algorithm then runs some heuristic
hj for (an additional)∆z time steps, wherehj and∆z are
chosen so as to maximize the number of instances inRz

that are solved per unit time.

Greedy algorithm for constructing task-switching
schedules:
1. Initialize R1 ← {1, 2, . . . , n}, z ← 1, T ← 0,

andtj ← 0 ∀j, 1 ≤ j ≤ k.
2. While |Rz| > 0:

(a) For any integersj andt, let Xz
j (t) = {i ∈ Rz :

τi,j ≤ t}. Find the pair(hj ,∆z) ∈ H × Z+

that maximizes

|Xz
j (tj + ∆z)|

∆z
.

(b) SetRz+1 ← Rz \Xz
j (tj + ∆j).

(c) SetSG(t)← hj for all t, T ≤ t < T + ∆z.
(d) Settj ← tj +∆z, T ← T +∆z, andz ← z+1.

3. Return the task-switching scheduleSG.

Theorem 3. The greedy algorithm runs in timeO(nk log n ·
min{n, Bk}) and returns a scheduleSG that is a 4-
approximation to the optimal task-switching schedule.

1TheO(knk+1) exact algorithm also appears as Theorem 12 of
(Sayag, Fine, & Mansour 2006).



Proof. See Appendix A.

Remark1. The greedy algorithm just described can be mod-
ified to produce a schedule that requires only one run to
be kept in memory at a time (i.e., instead of suspending a
run we throw it away and may later start over from scratch)
without degrading the worst-case approximation ratio. This
modification is useful if it is costly to keep multiple runs in
memory.

The Learning-Theoretic Setting
To apply the offline algorithms of the previous section in
practice, we might collect a set of problem instances to use
as training data, compute an (approximately) optimal sched-
ule for the training instances, and then use this schedule to
solve additional test instances. Under the assumption that
the training and test instances are drawn (independently)
from a fixed probability distribution, we would then like
to know how many training instances are required so that
the optimal schedule for the training instances will be near-
optimal for the test instances with high probability.

For any task-switching scheduleS, let C̄(S) =
1
m

∑m
i=1 ci(S) be the sample mean cost ofS on the training

instances, and letC(S) be the (unknown) true mean. The
following theorem gives a bound on the number of train-
ing instances required to ensure that, with high probability,
the maximum difference betweenC(S) andC̄(S) over all
S ∈ Sts is small. Our theorem improves upon the uniform
convergence result of Sayaget al. (2006), whose sample

complexity isO
(

k3B3

ε2 ln k
δ

)
(when comparing this bound

to ours, recall thatc∗ ≤ Bk).

Theorem 4. Let C(S) and C̄(S) be defined as above. For

m ≥ m0(ε, δ) = 1
2

(
c∗

ε

)2

ln
(

2|V |
δ

)
, the inequality

max
S∈Sts

∣∣C̄(S)− C(S)
∣∣ ≤ ε

holds with probability at least1− δ, where|V | = (B +1)k.

Proof. See Appendix A.

As a corollary of Theorem 4 we obtain a bound on the
number of training instances required to compute a sched-
ule that is probably approximately optimal. In particular,
if S̄ is anα-approximation to the optimal schedule for the
training instances (i.e.,̄C(S̄) ≤ α minS∈Sts

C̄(S)), and
S∗ = arg minS∈Sts

C(S) is the true optimal schedule, The-
orem 4 implies thatC(S̄) ≤ C̄(S̄) + ε ≤ αC̄(S∗) + ε ≤
αC(S∗) + ε(1 + α) holds with probability at least1− δ for
m ≥ m0(ε, δ).

The Online Setting
One weakness of Theorem 4 is that it assumes we can draw
training (and test) instances independently at random from
a fixed probability distribution. In practice, the distribution
might change over time and successive instances might not
be independent.

In this section we consider the problem of selecting task-
switching schedules in an adversarial (worst-case) online

setting. In this setting we are fed, one at a time, a sequence
〈x1, x2, . . . , xn〉 of problem instances to solve. Prior to re-
ceiving instancexi, we must select a task-switching sched-
uleSi. We then useSi to solvexi and incur costci(Si). Our
regretat the end ofn rounds is equal to

1
n

(
E

[
n∑

i=1

Ci

]
− min

S∈Sts

n∑
i=1

ci(S)

)
(1)

whereCi is the cost we incur on instancexi,2 and the expec-
tation is over any random bits used by our schedule-selection
strategy. That is, regret is the difference between our aver-
age cost and the average cost of the optimal schedule for the
(unknown) set ofn instances. A strategy’s worst-case re-
gret is the maximum value of (1) over all instance sequences
of lengthn (i.e., over all possiblen by k matricesτ ). A no-
regret strategyhas worst-case regret that iso(1) as a function
of n.

Before describing our no-regret strategy, let us consider
the special case in which each instance is drawn indepen-
dently at random from a fixed distribution. In this case, The-
orem 4 suggests a simple schedule-selection strategy: take
the firstm = m0(ε, δ) instances as training data, compute
an optimal schedule for them, and use that schedule on the
remainingn −m instances. The regret of this strategy is at
most 1

n (mBk + (n−m)(2ε + δBk)). By choosingε andδ

appropriately one can get regretO(Bk( ln(n|V |)
n )1/3) = o(1)

in the distributional online setting. One can prove analo-
gous guarantees if anα-approximation rather than an opti-
mal schedule is computed for the training instances. Unfor-
tunately, these strategies do not have good worst-case regret
bounds, because in the worst case the optimal schedule for
the firstm instances might perform very poorly on the re-
mainingn−m instances.

To achieve good performance in the worst-case setting,
we use a strategy based on the “label efficient forecaster”
described by Cesa-Bianchiet al. (2005). When we receive
instancexi, with probability m

n we exploreby solving the
instance with allk heuristics and adding it to our pool of
training instances (initially the pool is empty). With proba-
bility 1− m

n , weexploitby sampling a schedule from a dis-
tribution in which each scheduleS is assigned probability
proportional toexp(−ηmcC̄(S)), whereC̄(S) is the aver-
age cost of scheduleS on the training instances in our pool,
mc is the current number of training instances, andη > 0
is a learning rate parameter (we will describe how to sample
from this distribution efficiently). Adapting Theorem 1 of
Cesa-Bianchiet al. (2005) to our setting yields the follow-
ing regret bound, which iso(1) as a function ofn.

Theorem 5. The label-efficient forecaster with learning
rate η = ( ln N

n
√

2
)2/3 and exploration probabilitym

n =

min
{
1,
√

η
2

}
has regret at most2c∗

(
2 ln N

n

)1/3
, where

N ≤ kBk is the number of task-switching schedules.

To implement the label-efficient forecaster efficiently, we
exploit the shortest path formulation introduced in the offline

2Ci might equalci(Si) or it might be larger, for example if we
choose to solvexi multiple times in order to gather training data.



Table 1: Results for the ICAPS 2006 optimal planning com-
petition (cross-validation results are parenthesized).

Solver Avg. CPU (s) Num. solved
Greedy schedule (x-val) 358 (407) 98 (97)
Modified greedy (x-val) 476 (586) 96 (95)
SATPLAN 507 83
Maxplan 641 88
MIPS-BDD 946 54
CPT2 969 53
FDP 1079 46
Parallel schedule 1244 89
IPPLAN-1SC 1437 23

setting. Specifically, using the dynamic programming ap-
proach described by György et al. (2006), we can maintain
the desired distribution over schedules (i.e., paths) implic-
itly by maintaining a weight for each edge in our graph, and
the time required for an exploitation step isO(|E|). To con-
verge to an optimal schedule we must set|E| = k(B + 1)k,
while to converge to anα-approximation we may set|E| =
k(dlogα Be + 1)k, as per the discussion leading up to The-
orem 2. By using a “lazy” implementation of the exploita-
tion steps, we can reduce the total decision-making time to
O(m|E|).

Unfortunately, the decision-making time required by the
label-efficient forecaster is still exponential ink. As fu-
ture work, we are developing a strategy based on the
greedy approximation algorithm that makes decisions in
time poly(n, k) and whose performance in the adversarial
online setting asymptotically converges to that of the offline
greedy algorithm.

Experimental Evaluation

Each year, various conferences hold solver competitions de-
signed to assess the state of the art in some problem do-
main. In these competitions, each submitted solver is run
on a sequence of problem instances, subject to some per-
instance time limit. Solvers are awarded points based on the
instances they solve, and prizes are awarded to the highest-
scoring solvers. Most competitions award separate prizes
for different categories of instances.

In this section we describe experiments performed using
data from solver competitions held at the following four con-
ferences: SAT 2005 (Boolean satisfiability), ICAPS 2006
(planning), CP 2006 (constraint solving), and IJCAR 2006
(theorem proving). For each competition, we constructed
the tableτ of solver completion times using data from the
competition web site (we did not actually run any of the
solvers). We present detailed results for the satisfiability
and planning competitions, and summarize the results for
the other competitions.

Results for the ICAPS 2006 planning competition

Six optimal planners3 were entered in the ICAPS 2006 com-
petition. Each was run on 240 instances, with a time limit
of 30 minutes per instance. On 110 of the instances, at
least one of the six planners was able to find a (provably)
optimal plan. We used the greedy algorithm to construct
an approximately optimal task-switching schedule, given as
input the completion times of each of the six planners on
each of these 110 instances. To address the possibility of
overfitting, we repeated our experiments using leave-one-
out cross-validation.4 We also evaluated a modified greedy
algorithm (described in Remark 1) that throws away all its
work when switching between solvers (when executing the
modified greedy schedule, only a single run needs to be kept
in memory at a time).

Table 1 presents the results. As shown in the table, the
greedy schedules outperform the naı̈ve parallel schedule
(which simply runs all six planners in parallel) as well as
each of the six individual planners, both in terms of the lower
bound on average CPU time and in terms of the number of
instances solved within the 30 minute time limit. The lower
bound was obtained by capping the CPU time for each in-
stance at the timeout value (we do not know the time a solver
truly takes on instances it did not solve within the 30 minute
time limit). Figure 2 shows the task-switching schedule con-
structed by the offline greedy algorithm.

SATPLAN

Maxplan

MIPS-BDD

CPT2

FDP

time (seconds)

1 10 100 10000.1

Figure 2: Greedy task-switching schedule for interleaving
solvers from the ICAPS 2006 optimal planning competition
(the solverIPPLAN-1SC is not shown because it did not
appear in the schedule).

Results for the SAT 2005 competition

We performed an experiment similar to the one just de-
scribed using the top two solvers from the random instance
category of the SAT 2005 competition. After removing in-
stances that neither of the top two solvers could solve, the
number of remaining instances was 284. Table 2 summa-
rizes our results. In this experiment it was practical to com-
pute an optimal schedule using the shortest paths algorithm

3An optimal planner is one that finds a plan of provably mini-
mum makespan.

4Leave-one-out cross-validation is performed as follows: for
each instance, we remove that instance from the table and run the
greedy algorithm on the remaining data to obtain a schedule to use
in solving that instance.



Table 2: Results for the SAT 2005 competition, random cat-
egory (cross-validation results are parenthesized).

Solver Avg. CPU (s) Num. solved
Optimal schedule 1173 261
Greedy schedule (x-val) 1173 (1259) 261 (260)
Parallel schedule 1325 257
ranov 2026 209
kcnfs-2004 2874 167

from Theorem 2. To our surprise, the optimal schedule’s av-
erage CPU time was only about 0.1% better than that of the
greedy schedule. The greedy schedule improves on the av-
erage CPU time of the faster of the two original solvers by a
factor of 1.7 and solves significantly more instances within
the 100 minute time limit. With only two available heuris-
tics, the improvement relative to the naı̈ve parallel schedule
is smaller but still significant. We performed similar exper-
iments using the top two solvers in the hand-crafted cate-
gory, where we obtained a factor of 2 improvement in aver-
age CPU time relative to the faster of the two solvers. In the
industrial category we obtained a factor of 1.2 improvement.

Summary
Table 3 summarizes our results on the four solver competi-
tions we considered. The “speedup factor” listed in the sec-
ond column is the ratio of the average CPU time for the best
individual solver to that of the greedy algorithm (e.g., for the
planning competition the speedup factor is507

358 ≈ 1.4). For
each competition, we list the range of speedup factors we
observed within each instance category (e.g., the SAT com-
petition had separate categories for industrial, random, and
hand-crafted instances).

Table 3: Summary of results for four solver competitions.

Solver competition Speedup factor
(range across categories)

SAT 2005 1.2–2.0
ICAPS 2006 1.4
CP 2006 1.0–2.0
IJCAR 2006 1.0–7.7

The Generalization to Restart Schedules
If H contains randomized heuristics, it may help to periodi-
cally restart them with a fresh random seed. In this setting,
we outline how our results on task-switching schedules can
be extended to a more powerful class of schedules which we
call restart schedules.

Definition (restart schedule). A restart scheduleS : Z+ →
H× {0, 1} specifies, for each integert ≥ 0, a pair S(t) =
(h, r); whereh is the heuristic to run from timet to time

t + 1 andr is a flag that, if set to 1, specifies thath should
be restarted with a fresh random seed (at timet + 1).

Our most exciting result is that a generalization of the
greedy approximation algorithm for task-switching sched-
ules achieves the optimal approximation ratio of 4 for the
problem of computing restart schedules offline (by Theo-
rem 1, no polynomial-time algorithm can achieve a better
approximation ratio unlessP = NP ). Informally, we ac-
complish this generalization by changing the rule our algo-
rithm follows to “greedily maximize theexpectednumber of
instances solved per unit time”.

The remainder of our results build on the following fact:
a restart schedule for a single randomized heuristich can
be represented as a task-switching schedule for the set of
heuristics{h1, h2, . . . , hB}, wherehi runs h with restart
thresholdi. Using this observation plus some additional
facts, we can prove analogues of Theorems 2 and 5 for
restart schedules. In a companion paper (Streeter, Golovin,
& Smith 2007), we present these results in more detail and
evaluate them experimentally.

Conclusions
A task-switching schedule specifies how to interleave the ex-
ecution of a set of deterministic heuristics, with the aim of
improving the mean running time. We described how to se-
lect task-switching schedules in offline, learning-theoretic,
and adversarial online settings. Experimentally, we showed
that task-switching schedules have the potential to improve
the performance of state-of-the-art solvers in several prob-
lem domains. We outlined how to extend our results to ran-
domized heuristics, in which case we allow the heuristics to
be periodically restarted with a fresh random seed.

Acknowledgment. This work was supported in part by
NSF ITR grants CCR-0122581 and IIS-0121678 and by
DARPA under Contract #FA8750-05-C-0033.

References
Cesa-Bianchi, N.; Lugosi, G.; and Stoltz, G. 2005. Mini-
mizing regret with label efficient prediction.IEEE Trans-
actions on Information Theory51:2152–2162.

Feige, U.; Lov́asz, L.; and Tetali, P. 2004. Approximating
min sum set cover.Algorithmica40(4):219–234.

Gomes, C. P., and Selman, B. 2001. Algorithm portfolios.
Artificial Intelligence126:43–62.

Gomes, C.; Selman, B.; Crato, N.; and Kautz, H. 2000.
Heavy-tailed phenomena in satisfiability and constraint sat-
isfications problems. Journal of Automated Reasoning
24(1/2):67–100.
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Appendix A: Proofs
Theorem 3. The greedy algorithm runs in timeO(nk log n ·
min{n, Bk}) and returns a scheduleSG that is a 4-
approximation to the optimal task-switching schedule.

Proof. Let GREEDY =
∑n

i=1 ci(SG), and letOPT =∑n
i=1 ci(S∗), whereS∗ is an optimal task-switching sched-

ule. Our goal is to show thatGREEDY ≤ 4 ·OPT .
On thezth epoch, the greedy algorithm runs some heuris-

tic hj for an additional∆z time steps. At that point in the
schedule, only the instances inRz remain unsolved, so these
∆z time steps contribute at most|Rz|∆z to GREEDY .
Thus

GREEDY ≤
∑
z≥1

|Rz|∆z . (2)

Let Qt = {i : ci(S∗) > t} be the set of instances that
remain unsolved byS∗ at time t. Then

OPT =
∑
t≥0

|Qt| . (3)

The following claim states the key property of the greedy
algorithm.

Claim 1. For any epochz and timet, |Qt| ≥ |Rz| − tsz,
wheresz is the maximum slope (i.e., the maximum value of
|Xz

j (tj+∆z)|
∆z

) from thezth epoch.

Proof (of Claim 1). If |Qt| < |Rz| − tsz then, at timet, the
scheduleS∗ has solved more thansz instances fromRz per
unit time. There must therefore be some heuristichj that, at
some timet′ ≤ t, has solved more thansz instances from

Rz per unit time, so
|Xz

j (t′)|
t′ > sz. It must be thatt′ > tj ;

otherwiseXz
j (t′) = 0 (by definition,Xz

j (t′) is a subset of
Rz, which only contains instances that remainunsolvedafter
runninghj for tj time steps). But by definition ofsz, for

any heuristichj and timet′ ≥ tj we havesz ≥
|Xz

j (t′)|
t′−tj

≥
|Xz

j (t′)|
t′ , a contradiction.

We are now ready to prove thatGREEDY ≤ 4 · OPT .
Let Tz be the smallest integert such that|Qt| ≤ 1

2 |Rz|. As
illustrated in Figure 3,

OPT =
∑
t≥0

|Qt| ≥
∑
z≥1

Tz
|Rz| − |Rz+1|

2
. (4)

By Claim 1, Tz ≥ |Rz|
2sz

. By inspection of the greedy al-
gorithm, |Rz| − |Rz+1| = sz∆z. Thus using (4) we have
OPT ≥

∑
z≥1

|Rz|
2sz

sz∆z

2 ≥ 1
4GREEDY , where the sec-

ond inequality follows from (2).

We now analyze the running time. BecauseT increases
by one each epoch and|Rz| decreases by one each epoch,
the number of epochs is at mostmin{Bk, n}. By exploit-
ing the fact that the pair(hj ,∆z) selected on thezth epoch
must havetj + ∆z = τi,j for somei, each epoch can be
implemented inO(nk log n) time.

t

|Qt|

|R1|/2

|R2|/2

T1 T2

.

.

.

.

.

.

|R3|/2

Figure 3: A proof of inequality (4).OPT equals the area un-
der the curve, whereas

∑
z≥1 Tz

|Rz|−|Rz+1|
2 equals the sum

of the areas of the shaded rectangles.

Theorem 4. Let C(S) and C̄(S) be defined as above. For

m ≥ m0(ε, δ) = 1
2

(
c∗

ε

)2

ln
(

2|V |
δ

)
, the inequality

max
S∈Sts

∣∣C̄(S)− C(S)
∣∣ ≤ ε

holds with probability at least1− δ, where|V | = (B +1)k.

Proof. As illustrated in Figure 1, each task-switching sched-
ule corresponds to a path in a vertex-weighted graph. For
any vertexv and training instancexi, letwi(v) be the weight
assigned tov on behalf ofxi (so wi(v) ∈ {0, 1}); let
W̄ (v) = 1

m

∑m
i=1 wi(v) be the sample mean weight as-

signed tov, and letW (v) be the true expected value. For any
scheduleS, letVS be the set of vertices in the corresponding
path. ThenC̄(S) =

∑
v∈VS

W̄ (v) by construction while
C(S) =

∑
v∈VS

W (v) by linearity of expectation. Each
scheduleS corresponds to a path that passes through at most
c∗ vertices of non-zero weight. Thus,maxv∈V |W̄ (v) −
W (v)| ≤ ε

c∗ impliesmaxS∈Sts

∣∣C̄(S)− C(S)
∣∣ ≤ ε.

For any vertexv ∈ V the sample mean̄W (v) is the av-
erage ofm independent identically distributed random vari-
ables, each of which has range[0, 1]. Thus by Hoeffding’s
inequality,

P
[
|W̄ (v)−W (v)| ≥ ε

c∗

]
≤ 2 exp

(
−2m

( ε

c∗

)2
)

.

Setting the right hand side equal toδ|V | , solving form, and
using the union bound proves the theorem.


