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Abstract

We present an asymptotically optimal algorithm for the
maxvariant of thek-armed bandit problem. Given a set
of k slot machines, each yielding payoff from a fixed
(but unknown) distribution, we wish to allocate trials
to the machines so as to maximize the expected max-
imum payoff received over a series ofn trials. Sub-
ject to certain distributional assumptions, we show that

O
“
k ln( k

δ
) ln(n)2

ε2

”
trials are sufficient to identify, with

probability at least1 − δ, a machine whose expected
maximum payoff is withinε of optimal. This result
leads to a strategy for solving the problem that is asymp-
totically optimal in the following sense: the gap be-
tween the expected maximum payoff obtained by us-
ing our strategy forn trials and that obtained by pulling
the single best arm for alln trials approaches zero as
n→∞.

1. Introduction
In thek-armed bandit problem one is faced with a set ofk
slot machines, each having an arm that, when pulled, yields
a payoff from a fixed (but unknown) distribution. The goal is
to allocate trials to the arms so as to maximize the expected
cumulative payoff obtained over a series ofn trials. Solving
the problem entails striking a balance between exploration
(determining which arm yields the highest mean payoff) and
exploitation (repeatedly pulling this arm).

In the maxk-armed bandit problem, the goal is to maxi-
mize the expectedmaximum(rather than cumulative) payoff.
This version of the problem arises in practice when tackling
combinatorial optimization problems for which a number of
randomized search heuristics exist: givenk heuristics, each
yielding a stochastic outcome when applied to some particu-
lar problem instance, we wish to allocate trials to the heuris-
tics so as to maximize the maximum payoff (e.g., the max-
imum number of clauses satisfied by any sampled variable
assignment, the minimum makespan of any sampled sched-
ule). Cicirello and Smith (2005) show that a maxk-armed
bandit approach yields good performance on the resource-
constrained project scheduling problem with maximum time
lags (RCPSP/max).
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1.1. Summary of Results
We consider a restricted version of the maxk-armed bandit
problem in which each arm yields payoff drawn from agen-
eralized extreme value (GEV) distribution(defined in§2).
This paper presents the first provably asymptotically opti-
mal algorithm for this problem.

Roughly speaking, the reason for assuming a GEV distri-
bution is the Extremal Types Theorem (stated in§2), which
states that the distribution of the sample maximum ofn inde-
pendent identically distributed random variables approaches
a GEV distribution asn → ∞. A more formal justifica-
tion is given in§3. For reasons that will become clear, the
nature of our results depends on the shape parameter (ξ) of
the GEV distribution. Assuming all arms haveξ ≤ 0, our
results can be summarized as follows.

• Let a be an arm that yields payoff drawn from a GEV
distribution with unknown parameters; letMn denote the
maximum payoff obtained after pullinga n times; and let
mn = E[Mn]. We provide an algorithm that, after pulling

the armO
(
ln( 1

δ ) ln(n)2

ε2

)
times, produces an estimatēmn

of mn with the property thatP [|m̄n −mn| < ε] ≥ 1− δ.

• Let a1, a2, . . . , ak be k arms, each yielding payoff from
(distinct) GEV distributions with unknown parameters.
Letmi

n denote the expected maximum payoff obtained by
pulling theith armn times, and letm∗

n = max1≤i≤k mi
n.

We provide an algorithm that, when run forn pulls, ob-
tains expected maximum payoffm∗

n − o(1).

Our results for the caseξ > 0 are similar, except that
our estimates and expected maximum payoffs come within
arbitrarily smallfactors (rather than absolute distances) of
optimality. Specifically, our estimates have the property that

P
[

1
1+ε < m̄n−α1

mn−α1
< 1 + ε

]
≥ 1 − δ for constantα1 inde-

pendent ofn, while the expected maximum payoff obtained
by using our algorithm forn pulls ism∗

n(1− o(1)).

1.2. Related Work
The classicalk-armed bandit problem was first studied by
Robbins (1952) and has since been the subject of numerous
papers; see Berry and Fristedt (1986) and Kaelbling (1993)
for overviews. In a paper similar in spirit to ours, Fong
(1995) showed that an initial exploration phase consisting



of O
(

k
ε2 ln(k

δ )
)

pulls is sufficient to identify, with probabil-
ity at least1 − δ, an arm whose mean payoff is withinε of
optimal. Theorem 2 of this paper proves a bound similar
to Fong’s on the number of pulls needed to identify an arm
whose expectedmaximumpayoff (over a series ofn trials)
is near-optimal.

The max variant of thek-armed bandit problem was first
studied by Cicirello and Smith (2004; 2005), who success-
fully used a heuristic for the maxk-armed bandit problem to
select among priority rules for the RCPSP/max. The design
of Cicirello and Smith’s heuristic is motivated by an analysis
of the special case in which each arm’s payoff distribution is
a GEV distribution with shape parameterξ = 0, but they do
not rigorously analyze the heuristic’s behavior. Our paper
is more theoretical and less empirical: on the one hand we
do not perform experiments on any practical combinatorial
problem, but on the other hand we provide stronger perfor-
mance guarantees under weaker distributional assumptions.

1.3. Notation
For an arbitrary cumulative distribution functionG, let the
random variableMG

n be defined by

MG
n = max{Z1, Z2, . . . , Zn}

where Z1, Z2, . . . , Zn are independent random variables,
each having distributionG. Let

mG
n = E[MG

n ] .

2. Extreme Value Theory
This section provides a self-contained overview of results
in extreme value theory that are relevant to this work. Our
presentation is based on the text by Coles (2001).

The central result of extreme value theory is an analogue
of the central limit theorem that applies to extremely rare
events. Recall that the central limit theorem states that (un-
der certain regularity conditions) the distribution of the sum
of n independent, identically distributed (i.i.d) random vari-
ables converges to a normal distribution asn → ∞. The
extremal types theorem states that (under certain regular-
ity conditions) the distribution of the maximum ofn i.i.d
random variables converges to a generalized extreme value
(GEV) distribution.

Definition (GEV distribution). A random variableZ has
a generalized extreme value distributionif, for constantsµ,
σ > 0, andξ, P[Z ≤ z] = GEV(µ,σ,ξ)(z), where

GEV(µ,σ,ξ)(z) = exp

(
−
(

1 +
ξ(z − µ)

σ

)− 1
ξ

)
for z ∈ {z : 1+ ξ(z−µ)σ−1 > 0}, andGEV(µ,σ,ξ)(z) = 1
otherwise. The caseξ = 0 is interpreted as the limit

lim
ξ′→0

GEV(µ,σ,ξ′)(z) = exp
(
− exp

(
µ− z

σ

))
.

The following three propositions establish properties of
the GEV distribution.
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Figure 1: The effect of the shape parameter (ξ) on the ex-
pected maximum ofn independent draws from a GEV dis-
tribution.

Proposition 1. Let Z be a random variable withP[Z ≤
z] = GEV(µ,σ,ξ)(z). Then

E[Z] =

 µ + σ
ξ (Γ(1− ξ)− 1) if ξ < 1, ξ 6= 0

µ + σγ if ξ = 0
∞ if ξ ≥ 1

where

Γ(z) =
∫ ∞

0

tz−1 exp(−t) dt

is the complete gamma function and

γ = lim
n→∞

(
n∑

k=1

1
k
− ln(n)

)
is Euler’s constant.

Proposition 2. Let G = GEV(µ,σ,ξ). ThenMG
n has distri-

butionGEV(µ′,σ′,ξ′), where

µ′ =
{

µ + σ
ξ (nξ − 1) if ξ 6= 0

µ + σ ln(n) otherwise,
σ′ = σnξ, and
ξ′ = ξ .

Substituting the parameters ofMG
n given by Proposition

2 into Proposition 1 gives an expression formG
n .

Proposition 3. LetG = GEV(µ,σ,ξ) whereξ < 1. Then

mG
n =

{
µ + σ

ξ

(
nξΓ(1− ξ)− 1

)
if ξ 6= 0

µ + σγ + σ ln(n) otherwise.

It follows that

• for ξ > 0, mG
n is Θ(nξ);

• for ξ = 0, mG
n is Θ(ln(n)); and

• for ξ < 0, mG
n = µ− σ

ξ −Θ(nξ) .

It is useful to have a visual picture of what Proposition 3
means. Figure 1 plotsmG

n as a function ofn for three GEV
distributions withµ = 0, σ = 1, andξ ∈ {0.1, 0,−0.1}.

The central result of extreme value theory is the following
theorem.



The Extremal Types Theorem. Let G be an arbitrary cu-
mulative distribution function, and suppose there exist se-
quences of constants{an > 0} and{bn} such that

lim
n→∞

P
[
MG

n − bn

an
≤ z

]
= G∗(z) (1)

for any continuity pointz of G∗, whereG∗ is a not a point
mass. Then there exist constantsµ, σ > 0, andξ such that
G∗(z) = GEV(µ,σ,ξ)(z) ∀z. Furthermore,

lim
n→∞

P [Mn ≤ z] = GEV(µan+bn,σan,ξ)(z) .

Condition (1) holds for a variety of distributions including
the normal, lognormal, uniform, and Cauchy distributions.

3. The Max k-Armed Bandit Problem
Definition (max k-armed bandit instance). An instance
I = (n,G) of the maxk-armed bandit problem is an or-
dered pair whose first element is a positive integern, and
whose second element is ak-tupleG = (G1, G2, . . . , Gk)
of cumulative distribution functions, each thought of as an
arm on a slot machine. Theith arm, when pulled, returns a
sample drawn independently at random fromGi.

Definition (max k-armed bandit strategy). A max k-
armed bandit strategyS is an algorithm that, given an in-
stanceI = (n,G) of the maxk-armed bandit problem, per-
forms a sequence ofn arm-pulls. For any strategyS and
integer` ≤ n, we denote byS`(I) the expected maximum
payoff obtained by runningS on I for ` trials:

S`(I) = E
[

max
0≤j≤`

pj

]
wherepj is the payoff obtained from thejth pull, and we
definep0 = 0.

Our goal is to come up with a strategyS such thatSn(I)
is near-maximal.

Note that the problem is ill-posed (i.e., there is no clear
criterion for preferring one strategy over another) unless we
make some assumptions about the distributionsGi. We will
assume that each armGi = GEV(µi,σi,ξi) is a GEV distri-
bution whose parameters satisfy

1. |µi| ≤ µu

2. 0 < σ` ≤ σi ≤ σu

3. ξ` ≤ ξi ≤ ξu < 1
2

for known constantsµu, σ`, σu, ξ`, andξu.
There are two arguments for assuming that each arm is a

GEV distribution. First, in practice the distribution of pay-
offs returned by a strong heuristic may be approximately
GEV, even if the conditions of the Extremal Type Theorem
are not formally satisfied (Cicirello & Smith 2004).

A second argument runs as follows. SupposeI = (n,G)
is an instance of the maxk-armed bandit problem in which
each distributionGi ∈ G satisfies condition (1) of the Ex-
tremal Types Theorem. Consider the instanceĪ = ( n

m , Ḡ),
whereḠ = (Ḡ1, Ḡ2, . . . , Ḡk), and armḠi returns the max-
imum payoff obtained by pulling the corresponding armGi

m times. Effectively,Ī is a restricted version ofI in which
the arms must be pulled in batches of sizem, rather than
in any arbitrary order. Form sufficiently large, the Ex-
tremal Types Theorem guarantees that for eachi, Ḡi u
GEV(µi,σi,ξi) for some constantsµi, σi, andξi. Thus, the
instanceI ′ = ( n

m ,G′) with G′ = (G′
1, G

′
2, . . . , G

′
k) and

G′
i = GEV(µi,σi,ξi) is approximately equivalent tōI and

satisfies our distributional assumptions.
The purpose of the restrictions on the parametersµi, σi,

and ξi is to ensure that each GEV distribution has finite,
bounded mean and variance.

4. An Asymptotically Optimal Algorithm
In this section we will analyze the maxk-armed bandit strat-
egyS1 shown below.

Our analysis will take a different form depending on
whether each GEV distribution has shape parameterξ < 0,
ξ = 0, or ξ > 0. Although we will analyze all three
cases, it is worth noting that the caseξ < 0 is the only one
that can arise in practice. This is true because in any real
combinatorial optimization problem the maximum payoff
is bounded from above, which (by Proposition 3) can only
happen whenξ < 0.

StrategyS1(ε, δ):
1. (Exploration)For each armGi ∈ G:

Using t = O
(
ln( 1

δ ) ln(n)2

ε2

)
samples ofGi,

obtain an estimatēmGi
n of mGi

n . Assuming
that armGi has shape parameterξi ≤ 0, our
estimate will have the property that

P
[
|m̄Gi

n −mGi
n | < ε

]
≥ 1− δ .

2. (Exploitation) Set î = arg max1≤i≤k m̄Gi
n ,

and pull armGî for the remainingn−tk trials.

If an armGi has shape parameterξi > 0, the estimate
obtained in step 1 (a) will instead have the property that

P
[

1
1+ε < m̄n−α1

mn−α1
< 1 + ε

]
≥ 1 − δ for constantα1 inde-

pendent ofn.
The following theorem shows that with appropriate set-

tings ofε andδ, strategyS1 is asymptotically optimal when
each arm has shape parameterξi ≤ 0. In Appendix A, we
establish a similar guarantee (using the same parameter set-
tings) when one or more arms haveξi > 0.
Theorem 1. Let I = (n,G) be an instance of the maxk-
armed bandit problem, whereG = (G1, G2, . . . , Gk) and
Gi = GEV(µi,σi,ξi). Let

• m∗
n = max1≤i≤k mGi

n ,
• ξmax = max1≤i≤k ξi, and

• S = S1

(
3

√
k
n , 1

kn2

)
.

Then ifξmax ≤ 0,

Sn(I) = m∗
n −O(∆)

where∆ = ln(nk) ln(n)2 3

√
k
n .



Proof. Let m̂n = m
Gî
n (whereî is the arm selected for ex-

ploitation in step 2). Then̂mn−tk is the expected maximum
payoff obtained during the exploitation step, so

Sn(I) ≥ m̂n−tk .

Claim 1. m̂n − m̂n−tk is O( tk
n ).

Proof of Claim 1. Let µ = µî, σ = σî, andξ = ξî be
the parameters of the arm selected for exploitation. Sup-
poseξ = 0. Then by Proposition 3,̂mn − m̂n−tk =
σ (ln(n)− ln(n− tk)). Thus forn sufficiently large,

m̂n − m̂n−tk = σ (ln(n)− ln(n− tk))

= −σ ln
(

n− tk

n

)
= −σ ln

(
1− tk

n

)
< 2σ

tk

n

= O

(
tk

n

)
where on the fourth line we have used the fact that forn
sufficiently large, tk

n < 1
2 , and for0 < x < 1

2 , −2x <
ln(1− x) ≤ −x.

Now supposeξ < 0. By Proposition 3,m̂n − m̂n−tk =
σ
ξ Γ(1 − ξ)(nξ − (n − t)ξ) = O((n − t)ξ − nξ) where we

have used the fact thatσ
ξ Γ(1− ξ) < 0. Expanding(n− t)ξ

in powers oft aboutt = 0 gives

(n− t)ξ = nξ − ξnξ−1t + O
(
t2nξ−2

)
.

Becauseξ ≤ 0 and |ξ| is bounded, it follows that
(n− t)ξ − nξ is O( t

n ).

With probability at least1 − kδ, all estimates obtained
during the exploration phase are withinε of the correct val-
ues, so thatm∗

n − m̂n < 2ε. Assumingm∗
n − m̂n < 2ε, it

follows that
m∗

n − m̂n−tk = (m∗
n − m̂n) + (m̂n − m̂n−tk)

< 2ε + O

(
tk

n

)
= 2ε +

k

n
O

(
ln(

1
δ
)
(lnn)2

ε2

)
= O (∆)

where on the second line we have used Claim 1. Thus with
probability at least1− kδ, our expected maximum payoff is
at leastm∗

n −O(∆). Therefore,
Sn(I) ≥ (1− kδ) (m∗

n −O (∆))
≥ m∗

n −O (∆)− kδm∗
n

= m∗
n − o(1)

where on the last line we have used the fact that∆ = o(1)
and the fact that forξ ≤ 0, m∗

n is O(log n), so thatkδm∗
n =

m∗
n

n2 = o(1).

Theorem 1 completes our analysis of the performance of
S1. It remains only to describe how the estimates in step 1
(a) are obtained.

4.1. Estimatingmn

We adopt the following notation:

• Let G = GEVµ,σ,ξ denote a GEV distribution with (un-
known) parametersµ, σ, andξ satisfying the conditions
stated in§3, and

• let mi = mG
i .

To estimatemn, we first obtain an accurate estimate ofξ.
Then

1. if ξ u 0 (so that the growth ofmn as a function oflnn
is linear), we estimatemn by first estimatingm1 andm2,
then performing linear interpolation;

2. otherwise we estimatemn by first estimatingm1, m2, and
m4, then performing a nonlinear interpolation.

4.1.1. Estimatingmi for i ∈ {1, 2, 4}
The following two lemmas use well-known ideas to effi-
ciently estimatemi for small values ofi.

Lemma 1. For any fixed positive integeri, O
(

1
ε2

)
draws

fromG suffice to obtain an estimatēmi of mi such that

P[|m̄i −mi| < ε] ≥ 3
4

.

Proof. First consider the special casei = 1. Let X denote
the sum oft draws fromG, for some to-be-specified positive
integert. ThenE[X] = m1t andV ar[X] = σ̃2t, whereσ̃
is the (unknown) standard deviation ofG (σ̃ is proportional
to, but not the same as, the scale parameterσ). We take
m̄1 = X

t as our estimate ofm1. Then

P[|m̄1 −m1| ≥ ε] = P[|tm̄1 − tm1| ≥ tε]

= P[|X − E[X]| ≥
√

tε

σ̃

√
V ar[X]]

≤ σ̃2

tε2

where the last inequality is Chebyshev’s. Thus to guarantee
P [|m̄1 −m1| ≥ ε] ≤ 1

4 we must sett = 4σ̃2

ε2 = O
(

1
ε2

)
(note that due to the assumptions in§3, σ̃ is O(1)).

For i > 1, we letX be the sum oft block maxima (each
the maximum ofi independent draws fromG). Because
the standard deviation ofMi andi itself are bothO(1), the
lemma follows.

To boost the probability that|m̄i − mi| < ε from 3
4 to

1− δ, we use the “median of means” method.

Lemma 2. Let i be a positive integer and letε > 0 and
δ ∈ (0, 1) be real numbers. ThenO

(
ln( 1

δ ) i
ε2

)
draws from

G suffice to obtain an estimatēmi of mi such that

P [|m̄n −mn| < ε] ≥ 1− δ .

Proof. We invoke Lemma 1r times (forr to be determined),
yielding a setE = {m̄(1)

i , m̄
(2)
i , . . . , m̄

(r)
i } of estimates of

mi. Let m̄i be the median element ofE. LetA = {m̄(j)
i ∈

E : |m̄(j)
i − mi| < ε} be the set of “accurate” estimates of

mi; and letA = |A|. Then|m̄i −mi| ≥ ε impliesA ≤ r
2 ,



while E[A] ≥ 3
4r. Using the standard Chernoff bound, we

have

P [|m̄i −mi| ≥ ε] ≤ P
[
A ≤ r

2

]
≤ exp

(
− r

C

)
for constantC > 0. Thusr = O

(
ln( 1

δ )
)

repetitions suffice
to ensureP[|m̄i −mi| > ε] ≤ δ.

4.1.2. Estimatingmn when ξ = 0
Lemma 3. AssumeG has shape parameterξ = 0. Let n
be a positive integer and letε > 0 and δ ∈ (0, 1) be real

numbers. ThenO
(
ln( 1

δ ) ln(n)2

ε2

)
draws fromG suffice to

obtain an estimatēmn of mn such that

P[|m̄n −mn| < ε] ≥ 1− δ .

Proof. By Proposition 3,mi = µ + σγ + σ ln(i). Thus

mn = m1 + (m2 −m1) log2(n) . (2)

Let m̄1 and m̄2 be estimates ofm1 andm2, respectively,
and letm̄n be the estimate ofmn obtained by plugginḡm1

andm̄2 into (2). Define∆i = |m̄i − mi| for i ∈ {1, 2, n}.
Then

∆n ≤ (1 + log2(n))(∆1 + ∆2) .

Thus to guaranteeP[∆n < ε] ≥ 1 − δ, it suffices that

P
[
∆i ≤ ε

2(1+log2(n))

]
≥ 1 − δ

2 for all i ∈ {1, 2}. By

Lemma 2, this requiresO
(
ln( 1

δ ) (ln n)2

ε2

)
draws fromG.

4.1.3. Estimatingmn when ξ 6= 0
For the purpose of the proofs presented here, we will make a
minor assumption concerning an arm’s shape parameterξi:
we assume that for some known constantξ∗ > 0,

|ξi| < ξ∗ ⇒ ξi = 0 .

Removing this assumption does not fundamentally change
the results, but it makes the proofs more complicated.

Lemma 5 shows how to efficiently estimateξ. Lemmas 6
and 7 show how to efficiently estimatemn in the casesξ < 0
andξ > 0, respectively. We will use the following lemma.

Lemma 4.
m4 −m2 ≥ 1

4σ and
m2 −m1 ≥ 1

8σ .

Proof. See Appendix A.

Lemma 5. For real numbersε > 0 and δ ∈ (0, 1),
O
(
ln( 1

δ ) 1
ε2

)
draws fromG suffice to obtain an estimatēξ

of ξ such that

P
[
|ξ̄ − ξ| < ε

]
≥ 1− δ .

Proof. Using Proposition 3, it is straightforward to check
that for anyξ < 1,

ξ = log2

(
m4 −m2

m2 −m1

)
. (3)

Let m̄1, m̄2, and m̄4 be estimates ofm1, m2, and
m4, respectively, and let̄ξ be the estimate ofξ obtained

by plugging m̄1, m̄2, and m̄4 into (3). Define∆m =
maxi∈{1,2,4} |m̄i −mi| and define∆ξ = |ξ̄ − ξ|. We wish
to upper bound∆ξ as a function of∆m.

In Claim 1 of Theorem 1 we showed that| ln(x + β) −
ln(x)| ≤ 2β

x for β ≤ x
2 . Letting N = m4 − m2 and

D = m2 −m1, and noting thatξ = log2(N)− log2(D) =
1

ln 2 (ln(N)− ln(D)), it follows that

∆ξ ≤
1

ln(2)

(
2(2∆m)

N
+

2(2∆m)
D

)
for ∆m < 1

2 min(N,D). Thus by Lemma 4 and the as-
sumption thatσ ≥ σ`, ∆ξ is O(∆m).

Define∆i = |m̄i −mi|, so that∆m = maxi∈{1,2,4} ∆i.
Then to guaranteeP[∆ξ < ε] ≥ 1 − δ, it suffices that
P [∆i ≤ Ω(ε)] ≥ 1 − δ

3 for all i ∈ {1, 2, 4}. By Lemma
2, this requiresO

(
ln( 1

δ ) 1
ε2

)
draws fromG.

Lemma 6. AssumeG has shape parameterξ ≤ −ξ∗. Let
n be a positive integer and letε > 0 andδ ∈ (0, 1) be real
numbers. ThenO

(
ln( 1

δ ) 1
ε2

)
draws fromG suffice to obtain

an estimatēmn of mn such that

P[|m̄n −mn| < ε] ≥ 1− δ .

Proof. By Proposition 3,

mi = µ +
σ

ξ

(
iξΓ(1− ξ)− 1

)
.

Define
α1 = µ− σξ−1

α2 = σξ−1Γ(1− ξ)
α3 = 2ξ

so that
mi = α1 + α2α

log2(i)
3 . (4)

Plugging in the valuesi = 1, i = 2, andi = 4 into (4) yields
a system of three quadratic equations. Solving this system
for α1, α2, andα3 yields

α1 = (m1m4 −m2
2)(m1 − 2m2 + m4)−1

α2 = (−2m1m2 + m2
1 + m2

2)(m1 − 2m2 + m4)−1

α3 = (m4 −m2)(m2 −m1)−1 .

Let m̄1, m̄2, andm̄4 be estimates ofm1, m2, andm4, re-
spectively. Plugginḡm1, m̄2, andm̄4 into the above equa-
tions yields estimates, saȳα1, ᾱ2, andᾱ3, of α1, α2, and
α3, respectively. Define∆m = maxi∈{1,2,4} |m̄i −mi| and
∆α = maxi∈{1,2,3} |ᾱi − αi|. To complete the proof, we
show that|m̄n −mn| is O(∆m). The argument consists of
two parts: in claims 1 through 3 we show that∆α isO(∆m),
then in Claim 4 we show that|m̄n −mn| is O(∆α).

Claim 1. Each of the numerators in the expressions forα1,
α2, andα3 has absolute value bounded from above, while
each of the denominators has absolute value bounded from
below. (The bounds are independent of the unknown param-
eters ofG.)



Proof of claim 1.The numerators will have bounded abso-
lute value as long asm1, m2, andm3 are bounded. Upper
bounds onm1, m2, andm3 follow from the restrictions on
the parametersµ, σ, andξ. As for the denominators, by
Lemma 4 we have

|m1 − 2m2 + m4| = |(m2 −m1)(α3 − 1)|
≥ 1

8σ`|2−ξ∗ − 1| .

Claim 2. LetN andD be fixed real numbers, and letβN and
βD be real numbers with|βD| < |D|

2 . Then|N+βN

D+βD
− N

D | is
O(|βN |+ |βD|).

Proof of claim 2.First, using the Taylor series expansion of
N

D+βD
,∣∣∣∣ N

D + βD
− N

D

∣∣∣∣ =
∣∣∣∣∣NβD

D2

∞∑
i=0

(−1)i+1

(
βD

D

)i
∣∣∣∣∣

≤
∣∣∣∣ NβD

D2(1− βDD−1)

∣∣∣∣
= O (|βD|) .

Then∣∣∣∣N + βN

D + βD
− N

D

∣∣∣∣ ≤ ∣∣∣∣ N

D + βD
− N

D

∣∣∣∣+ ∣∣∣∣ βN

D + βD

∣∣∣∣
= O (|βN |+ |βD|) .

Claim 3. ∆α is O(∆m).

Proof of claim 3.We show that|ᾱ1−α1| isO(∆m). Similar
arguments show that|ᾱ2 − α2| and|ᾱ4 − α4| areO(∆m),
which proves the claim. To see that|ᾱ1 − α1| is O(∆m),
let N = m1m4 − m2

2, and letD = m1 − 2m2 + m4, so
that α1 = N

D . DefineN̄ andD̄ in the natural way so that

ᾱ1 = N̄
D̄

. Becausem1,m2, andm3 are allO(1) (by Claim
1), it follows that both|N̄ − N | and|D̄ − D| areO(∆m).
That|ᾱ1 − α1| is O(∆m) follows by Claim 2.

Claim 4. |m̄n −mn| is O (∆α).

Proof of claim 4.Becauseξ` ≤ ξ ≤ −ξ∗ it must be that
0 < 2ξ` < α3 < 2−ξ∗ < 1. So for∆α sufficiently small,
0 < ᾱ3 < 1.

|m̄n −mn| =
∣∣∣(ᾱ1 + ᾱ2ᾱ

log2(n)
3

)
−
(
α1 + α2α

log2(n)
3

)∣∣∣
≤ |ᾱ1 − α1|+

∣∣∣ᾱ2ᾱ
log2(n)
3 − ᾱ2α

log2(n)
3

∣∣∣
+
∣∣∣ᾱ2α

log2(n)
3 − α2α

log2(n)
3

∣∣∣
≤ |ᾱ1 − α1|+ |ᾱ2| |ᾱ3 − α3|+ |ᾱ2 − α2|
= O(∆α)

where on the third line we have used the fact that bothα3

and ᾱ3 are between 0 and 1, and in the last line we have
used the fact that|ᾱ2| is O(1).

Putting claims 3 and 4 together,|m̄n − mn| is O(∆m).
Define∆i = |m̄i − mi|, so that∆m = maxi∈{1,2,4} ∆i.
Thus to guaranteeP[|m̄n − mn| < ε] ≥ 1 − δ, it suffices
thatP [∆i < Ω(ε)] ≥ 1− δ

3 for all i ∈ {1, 2, 4}. By Lemma
2, this requiresO(ln( 1

δ ) 1
ε2 ) draws fromG.

Lemma 7. AssumeG has shape parameterξ ≥ ξ∗. Let n
be a positive integer and letε > 0 and δ ∈ (0, 1) be real

numbers. ThenO
(
ln( 1

δ ) ln(n)2

ε2

)
draws fromG suffice to

obtain an estimatēmn of mn such that

P
[

1
1 + ε

<
m̄n − α1

mn − α1
< (1 + ε)

]
≥ 1− δ

whereα1 = µ− σ
ξ .

Proof. See Appendix A.

Putting the results of lemmas 3, 5, 6, and 7 together, we
obtain the following theorem.

Theorem 2. Let n be a positive integer and letε > 0 and

δ ∈ (0, 1) be real numbers. ThenO
(
ln( 1

δ ) ln(n)2

ε2

)
draws

from G suffice to obtain an estimatēmn of mn such that
with probability at least1− δ, one of the following holds:

• ξ ≤ 0 and|m̄n −mn| < ε, or
• ξ > 0 and 1

1+ε < m̄n−α1
mn−α1

< 1 + ε, whereα1 = µ− σ
ξ .

Proof. First, invoke Lemma 5 with parametersξ
∗

3 and δ
2 .

Then invoke one of Lemmas 3, 6, or 7 (depending on the
estimateξ̄ obtained from Lemma 5) with parametersε and
δ
2 .

Theorem 2 shows that step 1 (a) of strategyS1 can be per-
formed as described. The following PAC bound is a corol-
lary.

Corollary 1. Let I = (n,G) be an instance of the maxk-
armed bandit problem, whereG = (G1, G2, . . . , Gk) and

Gi = GEV(µi,σi,ξi). If ξi ≤ 0 ∀i, thenO
(
k ln(k

δ ) ln(n)2

ε2

)
pulls suffice to identify an arm̂i such that with probability at
least1− δ, m∗

n −mî
n < ε.

5. Conclusions
The maxk-armed bandit problem is a variant of the classical
k-armed bandit problem with practical applications to com-
binatorial optimization. Motivated by extreme value theory,
we studied a restricted version of this problem in which each
arm yields payoff drawn from a GEV distribution. We de-
rived PAC bounds on the sample complexity of estimating
mn, the expected maximum ofn draws from a GEV distri-
bution. Using these bounds, we showed that a simple algo-
rithm for the maxk-armed bandit problem is asymptotically
optimal. Ours is the first algorithm for this problem with
rigorous asymptotic performance guarantees.
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Appendix A
Theorem 3. Let I = (n,G) be an instance of the maxk-
armed bandit problem, whereG = (G1, G2, . . . , Gk) and
Gi = GEV(µi,σi,ξi). Let

• m∗
n = max1≤i≤k mGi

n ,

• ξmax = max1≤i≤k ξi, and

• S = S1

(
3

√
k
n , 1

kn2

)
.

Then ifξmax > 0,

Sn(I)− α1

m∗
n − α1

= 1−O(∆)

where∆ = ln(nk) ln(n)2 3

√
k
n and α1 = max1≤i≤k αi,

whereαi = µi − σi

ξi
.

Proof. For the moment, let us assume thatall arms have
shape parameterξi > 0. LetA be the event (which occurs
with probability at least1 − kδ) that all estimates obtained
in step 1 (a) satisfy the inequality in Theorem 2.

Claim 1. To prove the theorem, it suffices to show thatA
implies m∗

n−α1
m̂n−tk−α1

= 1 + O(∆).

Proof of claim 1.BecauseSn(I) ≥ m̂n−tk and the eventA
occurs with probability at least1 − kδ, it suffices to show
thatA implies

(1− δk)m̂n−tk − α1

m∗
n − α1

= 1−O(∆) .

Becauseδk(m̂n−tk)
m∗

n−α1
is O

(
1

n2

)
= o(∆), it suffices to show

thatA implies

m̂n−tk − α1

m∗
n − α1

= 1−O(∆) .

This can be rewritten asm∗
n−α1 = (m̂n−tk−α1) 1

1−O(∆) =
(m̂n−tk − α1)(1 + O(∆)) (we can replace 1

1−O(∆) with

1+O(∆) because forr < 1
2 , 1

1−r = 1+ r
1−r < 1+2r).

Claim 2. m̂n−α̂1
m̂n−tk−α̂1

= 1 + O(∆).

Proof of claim 2.Using Proposition 3,

ln
(

m̂n − α̂1

m̂n−tk − α̂1

)
= ln

(
nξ

(n− t)ξ

)
= ξ (ln(n)− ln(n− tk))

= O(
tk

n
)

= O(∆)

The claim follows from the fact thatexp(β) < 1 + 3
2β for

β < 1
2 , so thatexp(O(∆)) = 1 + O(∆).

Claim 3. A implies that for alli,

m̄i
n − α1

mi
n − α1

< 1 + ε .

Proof of claim 3.By definition,α1 = αi
1 − β for someβ ≥

0. The claim follows from the fact that for positiveN andD
andβ ≥ 0, N

D < 1 + ε implies N+β
D+β < 1 + ε.

Claim 4. A implies m∗
n−α1

m̂n−tk−α1
= 1 + O(∆).

Proof of claim 4.

m∗
n−α1

mî
n−tk−α1

= m∗
n−α1

m̄∗
n−α1

· m̄∗
n−α1

m̄î
n−α1

· m̄î
n−α1

mî
n−α1

· mî
n−α1

mî
n−tk−α1

≤ (1 + ε) · 1 · (1 + ε) · (1 + O(∆))
= 1 + O(∆)

where in the second step we have used claims 2 and 3.

Putting claims 1 and 4 together completes the proof. To
remove the assumption that all arms haveξi > 0, we need
to show thatA implies that forn sufficiently large, the arms
î and i∗ (the only arms that play a role in the proof) will
have shape parameters> 0. This follows from the fact that
if ξi ≤ 0, mi

n is O(ln(n)), while if ξi > ξ∗ > 0, mi
n is

Ω(nξi).

Lemma 4.
m4 −m2 ≥ 1

4σ and
m2 −m1 ≥ 1

8σ .

Proof. If ξ = 0, then by Proposition 3,m4 − m2 = m2 −
m1 = ln(2)σ and we are done. Otherwise,

m4 −m2 = σ(2ξ − 1)ξ−1Γ(1− ξ) and
m2 −m1 = σ(4ξ − 2ξ)ξ−1Γ(1− ξ) .

It thus suffices to prove the following claim.



Claim 1.

min
ξ< 1

2

{
2ξ − 1

ξ
Γ(1− ξ)

}
≥ 1

4
, and

min
ξ< 1

2

{
4ξ − 2ξ

ξ
Γ(1− ξ)

}
≥ 1

8
.

Proof of claim 1.We state without proof the following
properties of theΓ function:

Γ(z) ≥ bzc! ∀z ≥ 2
Γ(z) ≥ 1

2 ∀z > 0

Making the change of variabley = −ξ, it suffices to show

min
y>− 1

2

{
1− 2−y

y
Γ(1 + y)

}
≥ 1

4
, and (5)

min
y>− 1

2

{
2−y(1− 2−y)

y
Γ(1 + y)

}
≥ 1

8
. (6)

(5) holds because for− 1
2 < y ≤ 1,

1− 2−y

y
Γ(1 + y) ≥ 1

2
Γ(1 + y) ≥ 1

4
,

while for y > 1,

1− 2−y

y
Γ(1 + y) ≥ by + 1c!

2y
≥ 1

2
.

Similarly, (6) holds because for− 1
2 < y ≤ 1,

2−y(1− 2−y)
y

Γ(1 + y) ≥ 1
8

,

while for y > 1,

2−y(1− 2−y)
y

Γ(1 + y) ≥ by + 1c!
2y(2y)

≥ 1
8

.

Lemma 7. AssumeG has shape parameterξ ≥ ξ∗. Let n
be a positive integer and letε > 0 and δ ∈ (0, 1) be real

numbers. ThenO
(
ln( 1

δ ) ln(n)2

ε2

)
draws fromG suffice to

obtain an estimatēmn of mn such that

P
[

1
1 + ε

<
m̄n − α1

mn − α1
< (1 + ε)

]
≥ 1− δ

whereα1 = µ− σ
ξ .

Proof. We use the same estimation procedure as in the proof
of Lemma 6. Letα1, α2, α3, ∆α, and∆m be defined as they
were in that proof.

The inequality 1
1+ε < m̄n−α1

mn−α1
< 1 + ε is the same as

| ln( m̄n−α1
mn−α1

)| < ln(1 + ε). Forε < 1
2 , ln(1 + ε) ≥ 7

8ε, so it
suffices to guarantee that

| ln(m̄n − α1)− ln(mn − α1)| <
7
8
ε .

Claim 1. | ln(m̄n − α1)− ln(mn − α1)| is O(ln(n)∆α).

Proof of claim 1.Because| ln(m̄n−α1)− ln(m̄n− ᾱ1)| is
O(∆α), it suffices to show that| ln(m̄n−ᾱ1)−ln(mn−α1)|
is O(ln(n)∆α). This is true because

ln(m̄n − ᾱ1) = ln
(
ᾱ2ᾱ

log2(n)
3

)
= log2(n) ln(ᾱ3) + ln(ᾱ2)
= log2(n) ln(α3) + ln(α2)±O (ln(n)∆α)

= ln
(
α2α

log2(n)
3

)
±O (ln(n)∆α)

= ln(mn − α1)±O (ln(n)∆α) .

Setting∆α < Ω
(
ln(n)−1ε

)
then guarantees| ln(m̄n) −

ln(mn)| < 7
8ε. By Claim 3 of the proof of Lemma 6 (which

did not depend on the assumptionξ < 0), ∆α is O (∆m),
so we requireP[∆m < Ω

(
ln(n)−1ε

)
] ≥ 1 − δ. Define

∆i = |m̄i − mi|, so that∆m = maxi∈{1,2,4} ∆i. It suf-
fices thatP

[
∆i < Ω

(
ln(n)−1ε

)]
≥ 1− δ

3 for i ∈ {1, 2, 4}.
By Lemma 2, ensuring this requiresO

(
ln( 1

δ ) ln(n)2

ε2

)
draws

from G.


