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Abstract 1.1. Summary of Results
We present an asymptotically optimal algorithm for the We consider a restricted version of the miagrmed bandit
maxvariant of thek-armed bandit problem. Given a set problem in which each arm yields payoff drawn frorgen-
of k slot machines, each yielding payoff from a fixed eralized extreme value (GEV) distributigdefined in§2).
(but unknown) distribution, we wish to allocate trials This paper presents the first provably asymptotically opti-
to the machines so as to maximize the expected max- mal algorithm for this problem.
imum payoff received over a series oftrials. Sub- Roughly speaking, the reason for assuming a GEV distri-
ject to certain d;strlbutlonal assumptions, we show that bution is the Extremal Types Theorem (state@2), which
0 (k ln(g)%) trials are sufficient to identify, with states that the distribution of the sample maximum fde-
probability at leastl — §, a machine whose expected pendent identically distributed random variables approaches
maximum payoff is withine of optimal. This result a GEV distribution as1 — oco. A more formal justifica-
leads to a strategy for solving the problem that is asymp- tion is given in§3. For reasons that will become clear, the
totically optimal in the following sense: the gap be- nature of our results depends on the shape parang@tef (
tween the expected maximum payoff obtained by us- the GEV distribution. Assuming all arms hage< 0, our

ing our strategy for trials and that obtained by pulling

the single best arm for alt trials approaches zero as

n — oo. e Let ¢ be an arm that yields payoff drawn from a GEV
distribution with unknown parameters; [&f,, denote the
maximum payoff obtained after pullingn times; and let

results can be summarized as follows.

1. Introduction m,, = E[M,]. We provide an algorithm that, after pulling
In the k-armed bandit problem one is faced with a sekof the ar In(t In(n)* times. produces an estim
slot machines, each having an arm that, when pulled, yields mO (In(3) =z ) 'Mes, produ Imate,

a payoff from a fixed (but unknown) distribution. The goalis ~ ©f mx With the property thal® [, — mn| <] > 1—4.
to allocate trials to the arms so as to maximize the expected o Let a;,as, ..., a; be k arms, each yielding payoff from
cumulative payoff obtained over a seriesudfials. Solving (distinct) GEV distributions with unknown parameters.
the problem entails striking a balance between exploration  Letm! denote the expected maximum payoff obtained by
(determining which arm yields the highest mean payoff) and pulling thei!" armn times, and letn}, = max; <;<; m’,.
exploitation (repeatedly pulling this arm). We provide an algorithm that, when run forpulls, ob-

In the maxk-armed bandit problem, the goal is to maxi- tains expected maximum payoff* — o(1).
mize the expecteshaximumn(rather than cumulative) payoff.
This version of the problem arises in practice when tackling

combinatorial optimization problems for which a number of Lo ,
randomized search heuristics exist: giveheuristics, each arbitrarily smallfactors (rather than absolute distances) of

yielding a stochastic outcome when applied to some particu- opt|Tallty._Spemﬂcally, our estimates have the property that
lar problem instance, we wish to allocate trials to the heuris- P | < 72=2t <1+ 6} > 1 — ¢ for constanta; inde-

Mn —0Q1

tics so as to maximize the maximum payoff (e.g., the max- pendent of:, while the expected maximum payoff obtained
imum number of clauses satisfied by any sampled variable by using our algorithm for. pulls ism?* (1 — o(1))
assignment, the minimum makespan of any sampled sched-

ule). Cicirello and Smith (2005) show that a mwarmed 1.2. Related Work

bandit approach yields good performance on the resource-

constrained project scheduling problem with maximum time Robbins (1952) and has since been the subject of numerous

lags (RCPSP/max). papers; see Berry and Fristedt (1986) and Kaelbling (1993)

Copyright © 2006, American Association for Artificial Intelli-  for overviews. In a paper similar in spirit to ours, Fong
gence (www.aaai.org). All rights reserved. (1995) showed that an initial exploration phase consisting

Our results for the cas¢ > 0 are similar, except that
our estimates and expected maximum payoffs come within

The classicak-armed bandit problem was first studied by



of O (£ In(%)) pulls is sufficient to identify, with probabil-
ity at leastl — §, an arm whose mean payoff is withirof
optimal. Theorem 2 of this paper proves a bound similar
to Fong’s on the number of pulls needed to identify an arm
whose expectethaximumpayoff (over a series af trials)

is near-optimal.

The max variant of thé-armed bandit problem was first
studied by Cicirello and Smith (2004; 2005), who success-
fully used a heuristic for the maxarmed bandit problem to
select among priority rules for the RCPSP/max. The design
of Cicirello and Smith’s heuristic is motivated by an analysis
of the special case in which each arm'’s payoff distribution is
a GEV distribution with shape parameter= 0, but they do
not rigorously analyze the heuristic’s behavior. Our paper
is more theoretical and less empirical: on the one hand we
do not perform experiments on any practical combinatorial
problem, but on the other hand we provide stronger perfor-

mance guarantees under weaker distributional assumptions.

1.3. Notation
For an arbitrary cumulative distribution functi@r, let the
random variable\/¢ be defined by

MG =wmax{Z,, Zs,...,Z,}

where 71, 7, ..., Z, are independent random variables,
each having distributionr. Let

mj; = E[M7].

2. Extreme Value Theory

This section provides a self-contained overview of results
in extreme value theory that are relevant to this work. Our
presentation is based on the text by Coles (2001).

The central result of extreme value theory is an analogue
of the central limit theorem that applies to extremely rare
events. Recall that the central limit theorem states that (un-
der certain regularity conditions) the distribution of the sum
of n independent, identically distributed (i.i.d) random vari-
ables converges to a normal distributionras— oo. The

extremal types theorem states that (under certain regular-

ity conditions) the distribution of the maximum af i.i.d

random variables converges to a generalized extreme value

(GEV) distribution.

Definition (GEV distribution). A random variableZ has
a generalized extreme value distributidinfor constantsu,
o >0,and§, P[Z < z] = GEV|, ,¢)(2), where

))

forze{z:1+&(z—p)o~! > 0},andGEV, ;¢ (z) = 1
otherwise. The case= 0 is interpreted as the limit

(e ("57))

The following three propositions establish properties of
the GEV distribution.

§(z — p)

g

GEVi0.6)(2) = exp (— <1 +

Elfiino GEV 0,61 (2) = exp

20 ~

- - - Shape =0.1
——Shape =0
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Figure 1: The effect of the shape parametgrdn the ex-
pected maximum of, independent draws from a GEV dis-
tribution.

Proposition 1. Let Z be a random variable witfP[Z <
2] = GEV(,,0.¢)(2). Then

Pt 2O —1) HE<LEA0
E(Z] =< p+oy if&=0
00 if&E>1
where

I'(2)

/ t*~Lexp(—t) dt
0

is the complete gamma function and

(Z % - 1n(n)>
k=1

). ThenMS has distri-

v = lim
n—oo
is Euler’s constant.

Proposition 2. LetG' = GEV{
butionGEV{,s , ¢y, Where

,U/: { M+%(n£_1)
1+ oln(n)
o' = oné, and
{=¢.
Substituting the parameters 8¢ given by Proposition
2 into Proposition 1 gives an expression fof’ .

Proposition 3. LetG = GEV|,, , ¢) where§ < 1. Then
:{ pt g (T -¢—1) ifE£0

p+ovy+oln(n) otherwise.
It follows that

e for & >0, m& is O(nd);
e for ¢ =0, m¢% isO(In(n)); and
. f0r£<0,mg=,u—%—@(n5).

It is useful to have a visual picture of what Proposition 3
means. Figure 1 plots:.$ as a function of: for three GEV
distributions withy = 0, 0 = 1, and§ € {0.1,0,—0.1}.

The central result of extreme value theory is the following
theorem.
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The Extremal Types Theorem. Let G be an arbitrary cu-
mulative distribution function, and suppose there exist se-
guences of constan{s,, > 0} and{b,,} such that

{M,LG — by

Qnp

lim P

n—oo

<il-ow
for any continuity point of G*, whereG* is a not a point
mass. Then there exist constaptsr > 0, and¢ such that
G*(2) = GEV(,, 0.¢)(2) Vz. Furthermore,

lim P[M, < z] = GEV(ua4,+b,,0a,.¢)(2) -
Condition (1) holds for a variety of distributions including
the normal, lognormal, uniform, and Cauchy distributions.

3. The Max k-Armed Bandit Problem

Definition (max k-armed bandit instance). An instance

I = (n,G) of the maxk-armed bandit problem is an or-
dered pair whose first element is a positive integeand
whose second element iskauple G = (G1,Go,...,Gy)

of cumulative distribution functions, each thought of as an
arm on a slot machine. Th&" arm, when pulled, returns a
sample drawn independently at random fran

Definition (max k-armed bandit strategy). A max k-
armed bandit strategy' is an algorithm that, given an in-
stancel = (n, G) of the maxt-armed bandit problem, per-
forms a sequence of arm-pulls. For any strategys and
integer¢ < n, we denote bys,(I) the expected maximum
payoff obtained by running on I for /£ trials:

max p;
0<j<e J]

Se(I) —E[

wherep; is the payoff obtained from thg” pull, and we
definepy = 0.

Our goal is to come up with a strategysuch thatS,, (I)
is near-maximal.

Note that the problem is ill-posed (i.e., there is no clear
criterion for preferring one strategy over another) unless we
make some assumptions about the distribut@nswWe will
assume that each ar@y;, = GEV(,,, -, ¢,) is @ GEV distri-
bution whose parameters satisfy

1 il < g

2.0<0p<0; <oy

3.4 <& <<

for known constantg,,, o¢, 0y, &, andg,,.

There are two arguments for assuming that each arm is a armed bandit problem, whe@é = (G, Go, ..

GEV distribution. First, in practice the distribution of pay-
offs returned by a strong heuristic may be approximately
GEV, even if the conditions of the Extremal Type Theorem
are not formally satisfied (Cicirello & Smith 2004).

A second argument runs as follows. Suppédse (n,G)
is an instance of the makarmed bandit problem in which
each distribution; € G satisfies condition (1) of the Ex-
tremal Types Theorem. Consider the instaince (>, G),
whereG = (G1, Gy, ...,G}), and armG; returns the max-
imum payoff obtained by pulling the corresponding a&n

m times. Effectively,] is a restricted version af in which
the arms must be pulled in batches of size rather than
in any arbitrary order. Fofn sufficiently large, the Ex-
tremal Types Theorem guarantees that for eacty;, =~
GEV(y,.0,.¢,) for some constants;, o;, and{;. Thus, the
instancel’” = (+,G') with ¢’ = (G',G5,...,G)) and
G; = GEV(,, 0,¢,) IS approximately equivalent t6 and
satisfies our distributional assumptions.

The purpose of the restrictions on the parametersr;,
and¢; is to ensure that each GEV distribution has finite,
bounded mean and variance.

4. An Asymptotically Optimal Algorithm

In this section we will analyze the maxarmed bandit strat-
egyS! shown below.

Our analysis will take a different form depending on
whether each GEV distribution has shape paranteter0,
& = 0,0r¢ > 0. Although we will analyze all three
cases, it is worth noting that the cagec 0 is the only one
that can arise in practice. This is true because in any real
combinatorial optimization problem the maximum payoff
is bounded from above, which (by Proposition 3) can only
happen wheg < 0.

StrategyS* (e, §):
1. (Exploration)For each arntz; € G:
Usingt = O (ln(%)lniﬁ)2) samples of3;,

obtain an estimatex&: of m&i. Assuming
that armG; has shape parametgr< 0, our
estimate will have the property that

P [|m§ — mf

<e]21—(5.

2. (Exploitation) Seti = argmax, ., MG,
and pull armG;; for the remaining: — ¢k trials.

If an arm G; has shape parametgr > 0, the estimate
obtained in step 1 (a) will instead have the property that

L o Mu—oq 7 4 e} > 1 — § for constanta; inde-

1+e My — Q1
pendent ofa.

The following theorem shows that with appropriate set-
tings ofe andd, strategyS' is asymptotically optimal when
each arm has shape parametex 0. In Appendix A, we
establish a similar guarantee (using the same parameter set-
tings) when one or more arms haye> 0.

Theorem 1. LetI = (n,G) be an instance of the makx
.,Gy) and

G; = GEV(MM’&). Let

e m} = max<i<y mSi,

b gmaz = maXj<i<k gi; and
— g1 3/k _1

Then if€,,4. <0,



Proof. Let m,, = mf (where: is the arm selected for ex-
ploitation in step 2). Ther,,_ is the expected maximum
payoff obtained during the exploitation step, so

Sn(l) > mn—tk .

Claim 1. 1, — My, IS O(5

Proof of Claim 1. Let u = p;, 0 = o3, and{ = &; be

the parameters of the arm selected for epr0|tat|on Sup—

pose¢ =

o (In(n) —

0. Then by Proposition 31, — My =
In(n — tk)). Thus forn sufficiently large,

My, — My = 0 (In(n) — In(n — tk))

<n—tk)

=—0ln

n

=—0oln (1 — tk)
n

tk
< 20—
n

—0 (tk:)
n
where on the fourth line we have used the fact thatrfor
sufficiently Iarge < % and for0 < z < % -2z <
In(l—2) < —=z.

Now suppos€& < 0. By Proposition 3yn,, — M, =
(1 - &)(n* — (n—1)°) = O((n — t)* — n*) where we
have used the fact th@il'(1 — ¢) < 0. Expanding(n — t)¢
in powers oft aboutt = 0 gives

(n—1t)f =n* —&nf 1t 4+ 0 (2n*72) .
Because¢ < 0 and |¢| is bounded, it follows that
(n—1)*—nfisO(L). O

With probability at leastl — k4, all estimates obtained
during the exploration phase are withif the correct val-
ues, so thatn), — m, < 2e. Assumingm;} — m, < 2, it
follows that

my, M tk)

)

— Mgl = (M, — 1) + (1, —

tk
n

k 1. (Inn)?
= 26 + EO (111(6) 62

= 0(A)

<26+O(

where on the second line we have used Claim 1. Thus with

probability at least — k4, our expected maximum payoff is

at leastn’, — O(A). Therefore,
Su(I) > (1 - k) (m}, — O (A)
>my — O (A) — kdm),
=m; —o(1)

where on the last line we have used the fact that o(
and the fact that fof < 0, m;, is O(logn), so thatcdm,

m

e = o(1).

)

O

Theorem 1 completes our analysis of the performance of

S!. It remains only to describe how the estimates in step 1
(a) are obtained.

4.1. Estimatingm,,
We adopt the following notation:

o LetG = GEV, ,¢ denote a GEV distribution with (un-
known) parameterg, o, and¢ satisfying the conditions
stated ing3, and

) |etmi = mLG

To estimaten,,, we first obtain an accurate estimatetof
Then

1. if £ = 0 (so that the growth ofn,, as a function oinn
is linear), we estimaten,, by first estimatingn,; andms,
then performing linear interpolation;

2. otherwise we estimate,, by first estimatingn, mo, and
my, then performing a nonlinear interpolation.

4.1.1. Estimatingm; for ¢ € {1,2,4}
The following two lemmas use well-known ideas to effi-
ciently estimaten; for small values of.

Lemma 1. For any fixed positive integer, O( ) draws
from G suffice to obtain an estimate; of m; such that

3
Pllm; —my| < e > -

Proof. First consider the special case= 1. Let X denote
the sum of draws fromG, for some to-be-specified positive
integert. ThenE[X] = m4t andVar[X] = &%t, wheres
is the (unknown) standard deviation Gf(¢ is proportional
to, but not the same as, the scale paramejer We take

m1 = 4 as our estimate ofi;. Then
Pllmy —ma| > € = P[[tmy — tma| > fé]
P(|X — E[X \/T
- &i
— te?

where the last inequality is Chebyshev’s. Thus to guarantee

Pljms —mi| > ¢] < 1 we must set = =0(%)
(note that due to the assumptlonsgB] gis O( ).

Fori > 1, we letX be the sum ot block maxima (each
the maximum ofi independent draws frort’). Because
the standard deviation dff; andi itself are bothO(1), the
lemma follows. O

To boost the probability thatn, — m;| < e from % to
1 — 4, we use the “median of means” method.

Lemma 2. Let i be a positive integer and let > 0 and
§ € (0,1) be real numbers. Thef (In(})-%) draws from
G suﬁlce to obtain an estimate; of m; such that

Pllmy, —m,| <€ >1-90.
Proof. We invoke Lemma T times (forr to be determined),
yielding a sett) = {m ) 52) mE”} of estimates of
m;. Letm,; be the median element o Let A = {mf-” €

E: |m§.j) — m;| < €} be the set of “accurate” estimates of
m;; and letA = |A|. Then|m; —m;| > eimpliesA < 7,



while E[A] > 3r. Using the standard Chernoff bound, we
have

Pl —mi| > <P A< Z] <exp(-5)
n(

for constantC' > 0. Thusr = O (1
to ensuréP[|m; —m;| > €] < 9. O
4.1.2. Estimatingm,, wheng& =0

Lemma 3. Assume’ has shape parametér = 0. Letn
be a positive integer and let > 0 and¢é € (0,1) be real

numbers. Ther® (1n(%)“‘i§>2> draws fromG suffice to
obtain an estimaten,, of m,, such that

P|in — | <€ >1-34.

Proof. By Proposition 3yn; = u+ oy + o In(¢). Thus

My, = my + (mg —ma)logy(n) . 2

Let m; andmy be estimates ofn; andms, respectively,
and letm,, be the estimate af,, obtained by pluggingn,
andmy into (2). DefineA; = |m; — m;| fori € {1,2,n}.
Then

Ay < (1+1ogy(n))(Ar + Ay) .
Thus to guarante®[A,, < ¢ > 1 — 4, it suffices that

€ ) :
PAZSW} Zl_ﬁforallle{l,2} By

Lemma 2, this require®@ (ln(%)(mﬁ%)z) draws fromG. O

4.1.3. Estimatingm,, when§ # 0

by plugging my, me, andmy into (3). Definel,, =
max;e(1,2,4) |Mi —m;| and defined¢ = |£ — £|. We wish
to upper bound\; as a function ofA,,,.

In Claim 1 of Theorem 1 we showed thdh(z + 3) —

In(z)| < 28 for 3 < 2. Letting N = m4 — my and

D = my —my, and noting that = log,(N) — log,(D) =
5 (In(N) — In(D)), it follows that
1 /22A,)  202A,)
<
Ae < In(2) ( N D

for A,,, < imin(N,D). Thus by Lemma 4 and the as-
sumption that > o/, A iISO(A,).

DefineA; = |m; — m;|, so thatA,, = max;eqy 243 Ai.
Then to guarante®[A; < ¢ > 1 — 4, it suffices that
P[A; <Q(e)] > 1— & foralli € {1,2,4}. By Lemma
2, this require® (In(5) ) draws fromG.

5
0

Lemma 6. Assumé&Z has shape parameter < —¢*. Let
n be a positive integer and let> 0 and§ € (0,1) be real
numbers. The® (In(3)-) draws fromG suffice to obtain
an estimaten,, of m,, such that

P, —m,| <€ >1-94.
Proof. By Proposition 3,

mi=u+%(z‘fr(1—g)—1) .

For the purpose of the proofs presented here, we will make a Define

minor assumption concerning an arm’s shape paranggter
we assume that for some known constgnt> 0,

6| <& =& =0.

Removing this assumption does not fundamentally change

the results, but it makes the proofs more complicated.
Lemma 5 shows how to efficiently estimgteLemmas 6

and 7 show how to efficiently estimate, in the caseg < 0

and¢ > 0, respectively. We will use the following lemma.

Lemma 4.

my — Moy > %0’ and
Mo —mq > 50 .
Proof. See Appendix A. O
Lemma 5 For real numberse > 0 andd € (0,1),
O (In( ) draws fromG suffice to obtain an estimate
of ¢ such

PllE—¢l<e>1-4.

Proof. Using Proposition 3, it is straightforward to check
that for any¢ < 1,

¢ = log, (H) . ©

Let mq, mg, and m4 be estimates ofny, ms, and
my, respectively, and lef be the estimate of obtained

o =p—oft
ay =0l 'T(1 =€)
Q3 :25

so that
m; = o1 + a0 loga(4) 4)

Plugging in the values= 1, i = 2, andi = 4 into (4) yields

a system of three quadratic equations. Solving this system

for a1, as, andas yields

o (mymg —m2)(my — 2mg +my) !

1 =
ag = (=2mymg +m? +m3)(my1 — 2mag +myg)”
az = (mg —ma)(mg —my)~"

1

Letmi, mo, andm, be estimates afiq, mq, andmy, re-
spectively. Pluggingn,, ms, andmy into the above equa-
tions yields estimates, say, as, andas, of ay, as, and
ag, respectively. Defin@\,,, = max;c; 243 [M; —m;| and
A, = maxieqr 2.3} |@; — ;]. To complete the proof, we
show thatjm,, — my,| is O(A,,). The argument consists of
two parts: in claims 1 through 3 we show thg}, is O(A,,),
then in Claim 4 we show thatn,, — m,,|is O(A,).

Claim 1. Each of the numerators in the expressionsdfor
a9, andas has absolute value bounded from above, while

each of the denominators has absolute value bounded from
below. (The bounds are independent of the unknown param-

eters ofG.)



Proof of claim 1. The numerators will have bounded abso-
lute value as long as:;, m2, andmg are bounded. Upper
bounds onmy, ms, andms follow from the restrictions on
the parameterg, o, and¢. As for the denominators, by
Lemma 4 we have

|y — 2mg + my]

Claim 2. Let N andD be fixed real numbers, and |ét; and
Bp be real numbers withdp| < %. Then|gigzv ~ Nlis
O(|Bn| + [Bpl)-

Prgof of claim 2. First, using the Taylor series expansion of

m’
’ N N :‘Nﬁp OO(_l)i—o—l(ﬁD)i
D+pp D D2 pars D
< ‘ NfBp
~|D*(1-BpD71)
=0 (|Bpl) -
Then
N+ﬁN_N<‘ N N ‘ BN
D+pp D|” |D+pp D D+ f6p
=0 (|Bn|+18p]) -
O
Claim 3. A, isO(A,,).
Proof of claim 3. We show thata; —a; | iISO(A,,,). Similar

arguments show thatv, — as| and|ay — a4| areO(A,,),
which proves the claim. To see that; — aq] is O(A,,),
let N = mimy — m3, and letD = m; — 2msy + my, SO
thata; = ¥. DefineN and D in the natural way so that
ap = %. Becausen,mo, andms are allO(1) (by Claim
1), it follows that both N — N| and|D — D| areO(A,,).
That|a; — a4] is O(A,,) follows by Claim 2. O

— ] iSO (Ag).

Proof of claim 4. Becausef, < & < —£* it must be that
0 <2 < a3 <2¢ < 1. SoforA, sufficiently small,
0<asg<l.

|, — M| = ‘(al +a2a130g2(n)) N (al +a2a;og2<n>)‘

Claim 4. |m.,

~log,(n) ~

log, (n
< |a1—a1\+‘a2a — agae(™

_ log,(n log,(n
4 ‘a2a3g2( )_a2a3g2( )

< |ar — ar] + |Gz |as — as] + |62 — az
=0(A,)
where on the third line we have used the fact that koth

and as are between 0 and 1, and in the last line we have
used the fact thdtvz| is O(1). O

Putting claims 3 and 4 togethéfm,, — m,| is O(A,,).
Define A; = |mi — mi|, so thatA,, = maX;e{1,2,4}
Thus to guaranteB[|m,, — m,| < ¢ > 1 — 4, it suffices
thatP [A; < Q(e)] > 1— 2 foralli € {1,2,4}. By Lemma
2, this require®)(In(4) %) draws fromG. O
Lemma 7. Assume~ has shape parametér> ¢*. Letn
be a positive integer and let > 0 and¢é € (0, 1) be real
numbers. TherO( n(% )M draws fromG suffice to
obtain an estimaten,, of m,, such that

1
P
|:1+6<

wherea; = p — %

Proof. See Appendix A. O

mn*al

<(1+e)] >1-94§

mp — Qg

Putting the results of lemmas 3, 5, 6, and 7 together, we
obtain the following theorem.

Theorem 2. Letn be a positive integer and let > 0 and
d € (0,1) be real numbers. The@® (ln( )“‘(”) draws

from G suffice to obtain an estimat&,, of m,, such that
with probability at leastl — §, one of the following holds:

e ¢ <0and|m, —my,| <eo0r
o§>0and1+E ﬁ":31<1+ewherea1 p—%.

Proof. First, invoke Lemma 5 with paramete% and g
Then invoke one of Lemmas 3, 6, or 7 (depending on the
§stimate§ obtained from Lemma 5) with parametersnd
5 O

Theorem 2 shows that step 1 (a) of stratégycan be per-
formed as described. The following PAC bound is a corol-
lary.

Corollary 1. LetI = (n,G) be an instance of the max
armed bandit problem, whe@ = (G1,Gs,...,Gy) and

Gi = GEVy, 5,6 If & < 0Vi, thenO (mn( )M)

pulls suffice to identify an armsuch that with probability at

leastl — 6, m;, —m,, <e.

5. Conclusions

The maxk-armed bandit problem is a variant of the classical
k-armed bandit problem with practical applications to com-
binatorial optimization. Motivated by extreme value theory,
we studied a restricted version of this problem in which each
arm yields payoff drawn from a GEV distribution. We de-
rived PAC bounds on the sample complexity of estimating
my, the expected maximum af draws from a GEV distri-
bution. Using these bounds, we showed that a simple algo-
rithm for the maxk-armed bandit problem is asymptotically
optimal. Ours is the first algorithm for this problem with
rigorous asymptotic performance guarantees.
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Appendix A

Theorem 3. LetI = (n,G) be an instance of the mak
armed bandit problem, whe@ = (G, Gs,...,Gy) and
Gi = GEV(,, o, ¢, Let

= mMaxi<;<k mgi,

hd fmaq: = maXj<;<k gi, and

e S=481 <\5/:, k’71L2>

Then if¢,,4: > 0,
Sp(I) —

e my

aq

—1-0(A
m} — g O(a)
= In(nk)In(n)*{/% and o) =

where A
whereq;

maxi<;<k Qg,

Proof. For the moment, let us assume tlzdlt arms have
shape parameter > 0. Let A be the event (which occurs
with probability at least — £9) that all estimates obtained
in step 1 (a) satisfy the inequality in Theorem 2.

Claim 1. To prove the theorem, it suffices to show tbét
|mpI|esﬁ =14+ 0(A).

Proof of claim 1.Becauses,, (I) > m, 4 and the eventd
occurs with probability at least — &4, it suffices to show
that.4 implies
(1 — 5k)m7,_tk —
my,

L—1-0(n).

—o

BecauseX*(Mn—tx)

my —aq

that.A |mpI|es

is O () = o(A), it suffices to show

Mn—tk ZM _ 4 _ o(A).
m} — g
This can be rewritten ag* —a; = (mn_twal)ﬁ =

(fin— — a1)(1 + O(A)) (we can replace—5 5y with

1+0(A) becausefor < 1, L =1+ <1+42r). O
Claim 2. % =1+ 0(A).

Proof of claim 2. Using Proposition 3,
mpy aq

i () - (5

— & (In(n) — In(n — tk))
tk
=0(")
= O(A)
The claim follows from the fact thatxp(3) < 1+ 23 for
, S0 thatexp(O(A)) = 1+ O(A). O

Cla|m 3. Aimplies that for alli,

M 01 g
m, —oq

Proof of claim 3. By definition,a; = o — 3 for somes3 >

0. The cIaim follows from the fact that for positiv€ and D

andg > 0, % <1+ cimplies 35 < 1 +e. O
Claim4. A impliesm =1+0(A).
Proof of claim 4.
7]7,;—041 _ my —ai . m;—al . mF —ar mﬁ —a
ml_ . —on my—o1  mi—ar mi—an i Q1
<(1+4+e€-1-(1+e)- (1+O(A))
=1+0(4)

where in the second step we have used claims 2 and(3.

Putting claims 1 and 4 together completes the proof. To
remove the assumption that all arms hdye> 0, we need
to show that4 implies that forn sufficiently large, the arms
i andi* (the only arms that play a role in the proof) will
have shape parametess0. This follows from the fact that
if & < 0, m: is O(In(n)), while if & > &* > 0, m{, is
Q(ns). O

Lemma 4.
m4 —msy > 1o and
mg —Mmy > 50 .
Proof. If £ = 0, then by Proposition 3y, —
my = In(2)o and we are done. Otherwise,
mg —mg = (25 — 1)E7IT(1 - €) and
mo —my = o (45 — 25701 - €) .
It thus suffices to prove the following claim.

mo = Mz —



Claim 1.

[
min{HF(l —{)} > —,and
e<s L ¢
min{45 _251"(1 —5)} > 1 .
€<} 8

Proof of claim 1.We state without proof the following
properties of th&" function:

T(z) > |z)! Vz>2
[(z)>1 Vz >0
Making the change of variable= —¢, it suffices to show
. 1—-27Y 1
min { (1 —|—y)} > - ,and 5)
y>—3 4
27Y(1—-27Y 1
min {()m + y>} NG
y>—1 Y 8’
(5) holds because fori <y <1,
1-27Y 1
Fl+y) = F(1+y) =K
while fory > 1,
1—27v ly+1)t 1
I'(1 > == > _
(I+y) > 2 22
Similarly, (6) holds because fenE <y<l1,
27Y(1—-27Y 1
while fory > 1,
27Y(1 —27Y) ly+1)! 1
—T(1 >
R e
O
O

Lemma 7. Assumé&= has shape parametér > £*. Letn
be a positive integer and let > 0 andd € (0, 1) be real

numbers. Ther® (l ( )ln(” draws fromG suffice to
obtain an estimaten,, of m,, such that

1
P
[1+e<

wherea; = 1 — %

My — Q1

< (1—&-6)}

my — Qg

Proof. We use the same estimation procedure as in the proof
of Lemma6. Letv, as, a3, Ay, andA,, be defined as they
were in that proof.

The mequallty— < Dm—ay < 1 + € is the same as

My —0]
|ln(zz:21)\ <In(l+e¢). Fore < 3,In(1+¢) > Ze, so it

suffices to guarantee that

| In(mp, —In(m, —a1)| < ze.

_ al) 3

Claim 1. |In(m, — a1) — In(m, — a1)] is O(In(n)A,).

Proof of claim 1. Becausé In(m,, — a1) — In(m, — &1)|is
O(A,), itsuffices to show thgtin(m,, — &1 ) —In(m, —aq)|
is O(In(n)A,). This is true because

In(m, —a;) =In (_ _}Q)Og?(n)>
= log,(n) In(@s) + In(asz)
= log,(n) In(as) + In(az) + O (In(n)A,)
=1In (aga?gr"(n)> + 0 (In(n)A,)
=In(m, —a1) £ O (In(n)A,) .
O
SettingA, < Q (In(n)'e) then guaranteedn(im,,) —
In(m,,)| < Ze. By Claim 3 of the proof of Lemma 6 (which
did not depend on the assumption< 0), A, is O (A,,),
so we requireP[A,, < Q(In(n)"'e)] > 1 — 4. Define
A; = |7’7L2 — mi|, SO thatAm = maxi€{17274} A;. It suf-
fices that? [A; < @ (In(n)~te)] > 1— & fori € {1,2,4}.
By Lemma 2, ensuring this requlréls(ln( )1“(") ) draws
from G.

O



